Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Nature ; 604(7904): 65-71, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35388197

RESUMO

With the scaling of lateral dimensions in advanced transistors, an increased gate capacitance is desirable both to retain the control of the gate electrode over the channel and to reduce the operating voltage1. This led to a fundamental change in the gate stack in 2008, the incorporation of high-dielectric-constant HfO2 (ref. 2), which remains the material of choice to date. Here we report HfO2-ZrO2 superlattice heterostructures as a gate stack, stabilized with mixed ferroelectric-antiferroelectric order, directly integrated onto Si transistors, and scaled down to approximately 20 ångströms, the same gate oxide thickness required for high-performance transistors. The overall equivalent oxide thickness in metal-oxide-semiconductor capacitors is equivalent to an effective SiO2 thickness of approximately 6.5 ångströms. Such a low effective oxide thickness and the resulting large capacitance cannot be achieved in conventional HfO2-based high-dielectric-constant gate stacks without scavenging the interfacial SiO2, which has adverse effects on the electron transport and gate leakage current3. Accordingly, our gate stacks, which do not require such scavenging, provide substantially lower leakage current and no mobility degradation. This work demonstrates that ultrathin ferroic HfO2-ZrO2 multilayers, stabilized with competing ferroelectric-antiferroelectric order in the two-nanometre-thickness regime, provide a path towards advanced gate oxide stacks in electronic devices beyond conventional HfO2-based high-dielectric-constant materials.

2.
Anal Chem ; 92(1): 957-965, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31822064

RESUMO

Conventional graphene oxide (GO)-based gas membranes, having a narrow pore-size range of less than 0.3 nm, exhibit limited gas molecular permeability because of the kinetic diameters of most volatile organic and sulfur compound (VOCs/VSCs) molecules being larger than 0.3 nm. Here, we employ GO nanosheets (NSs) with a tunable pore-size distribution as a molecular sieving layer on two-dimensional (2D) metal oxide NSs-based gas sensors, i.e., PdO-sensitized WO3 NSs to boost selectivity toward specific gas species. The pore size, surface area, and pore density of GO NSs were simply manipulated by controlling H2O2 concentration. In addition, the pore size-tuned GO NSs were coated on cellulose filtering paper as a free-standing nanoporous membrane. Holey GO membrane showed a highly selective H2S permeability characteristic, exhibiting superior cross-selectivity to CH3COCH3 (0.46 nm), C2H5OH (0.45 nm), and C7H8 (0.59 nm) with larger kinetic diameters compared with H2S (0.36 nm). Such pore-size-tuned GO nanoporous layer is scalable and robust, highlighting a great promise for designing low cost and highly efficient gas-permeable membrane for outstanding selective gas sensing platform.

3.
Anal Chem ; 90(15): 8769-8775, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-29790330

RESUMO

Lead(II) acetate [Pb(Ac)2] reacts with hydrogen sulfide to form colored brownish precipitates of lead sulfide. Thus far, in order to detect leakage of H2S gas in industrial sectors, Pb(Ac)2 has been used as an indicator in the form of test papers with a detection limit only as low as 5 ppm. Diagnosis of halitosis by exhaled breath needs sensors able to detect down to 1 ppm of H2S gas. In this work, high surface area and porous Pb(Ac)2 anchored nanofibers (NFs) that overcome limitations of the conventional Pb(Ac)2-based H2S sensor are successfully achieved. First, lead(II) acetate, which melts at 75 °C, and polyacrylonitrile (PAN) polymer are mixed and stirred in dimethylformamide (DMF) solvent at 85 °C, enabling uniform dispersion of fine liquid droplets in the electrospinning solution. During the subsequent electrospinning, Pb(Ac)2 anchored NFs are obtained, providing an ideal nanostructure with high thermal stability against particle aggregation, numerous reactions sites, and enhanced diffusion of H2S into the three-dimensional (3D)-networked NF web. This newly obtained sensing material can detect down to 400 ppb of H2S at a relative humidity of 90%, exhibiting high potential feasibility as a high-performance colorimetric sensor platform for diagnosis of halitosis.


Assuntos
Colorimetria/métodos , Sulfeto de Hidrogênio/análise , Nanofibras/química , Compostos Organometálicos/química , Resinas Acrílicas/química , Testes Respiratórios/métodos , Halitose/diagnóstico , Humanos , Limite de Detecção , Nanofibras/ultraestrutura , Porosidade
4.
Anal Chem ; 90(15): 9338-9346, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-29976051

RESUMO

A new type of chemiresistor, the impedance-transduced chemiresistor (ITCR), is described for the rapid analysis of glucose. The ITCR exploits porous, high surface area, fluorine-doped carbon nanofibers prepared by electrospinning of fluorinated polymer nanofibers followed by pyrolysis. These nanofibers are functionalized with a boronic acid receptor and stabilized by Nafion to form the ITCR channel for glucose detection. The recognition and binding of glucose by the ITCR is detected by measuring its electrical impedance at a single frequency. The analysis frequency is selected by measuring the signal-to-noise ( S/ N) for glucose detection across 5 orders of magnitude, evaluating both the imaginary and real components of the complex impedance. On the basis of this analysis, an optimal frequency of 13 kHz is selected for glucose detection, yielding an S/ N ratio of 60-100 for [glucose] = 5 mM using the change in the total impedance, Δ Z. The resulting ITCR glucose sensor shows a rapid analysis time (<8 s), low coefficient of variation for a series of sensors (<10%), an analysis range of 50 µM to 5 mM, and excellent specificity versus fructose, ascorbic acid, and uric acid. These metrics for the ITCR are obtained using a sample size as small as 5 µL.


Assuntos
Glicemia/análise , Carbono/química , Impedância Elétrica , Glucose/análise , Técnicas Biossensoriais , Técnicas Eletroquímicas , Microscopia Eletrônica/métodos , Porosidade , Estudo de Prova de Conceito , Análise Espectral/métodos , Propriedades de Superfície , Lágrimas/química
5.
Small ; 14(44): e1802260, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30589512

RESUMO

The development of flexible chemiresistors is imperative for real-time monitoring of air quality and/or human physical conditions without space constraints. However, critical challenges such as poor sensing characteristics, vulnerability under toxic chemicals, and weak reliability hinder their practical use. In this work, for the first time, an ultrasensitive flexible sensing platform is reported by assembling Pt loaded thin-layered (≈10 nm) SnO2 nanosheets (Pt-SnO2 NSs) based 2D sensing layers on Ag nanowires embedded glass-fabric reinforced vinyl-phenyl siloxane hybrid composite substrate (AgNW-GFRVPH film) as a heater. The thermally stable AgNW-GFRVPH film based heater is fabricated by free radical polymerization of vinyl groups in vinyl-phenyl oligosiloxane and phenyltris(dimethylvinylsiloxy)silane with Ag NW and glass-fabric, showing outstanding heat generation (≈200 °C), high dimensional stability (13 ppm °C-1), and good thermal stability (≈350 °C). The Pt-SnO2 NSs, which are synthesized by calcination of Sn precursor coated graphene oxide (GO) sheets and subsequent Pt functionalization, exhibit high mechanical flexibility and superior response (Rair/Rgas = 4.84) to 1 ppm level dimethyl sulfide. Taking these advantages, GO-templated oxide NSs combined with a highly stable AgNW-GFRVPH film heater exhibits the best dimethyl sulfide sensing performance compared to state-of-the-art flexible chemiresistors, enabling them as a superior flexible gas sensing platform.

6.
J Am Chem Soc ; 139(34): 11868-11876, 2017 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-28777556

RESUMO

Facile synthesis of porous nanobuilding blocks with high surface area and uniform catalyst functionalization has always been regarded as an essential requirement for the development of highly sensitive and selective chemical sensors. Metal-organic frameworks (MOFs) are considered as one of the most ideal templates due to their ability to encapsulate ultrasmall catalytic nanoparticles (NPs) in microporous MOF structures in addition to easy removal of the sacrificial MOF scaffold by calcination. Here, we introduce a MOFs derived n-type SnO2 (n-SnO2) sensing layer with hollow polyhedron structures, obtained from p-n transition of MOF-templated p-type Co3O4 (p-Co3O4) hollow cubes during galvanic replacement reaction (GRR). In addition, the Pd NPs encapsulated in MOF and residual Co3O4 clusters partially remained after GRR led to uniform functionalization of efficient cocatalysts (PdO NPs and p-Co3O4 islands) on the porous and hollow polyhedron SnO2 structures. Due to high gas accessibility through the meso- and macrosized pores in MOF-templated oxides and effective modulation of electron depletion layer assisted by the creation of numerous p-n junctions, the GRR-treated SnO2 structures exhibited 21.9-fold higher acetone response (Rair/Rgas = 22.8 @ 5 ppm acetone, 90%RH) compared to MOF-templated p-Co3O4 hollow structures. To the best of our knowledge, the selectivity and response amplitudes reported here for the detection of acetone are superior to those MOF derived metal oxide sensing layers reported so far. Our results demonstrate that highly active MOF-derived sensing layers can be achieved via p-n semiconducting phase transition, driven by a simple and versatile GRR process combined with MOF templating route.

7.
J Am Chem Soc ; 138(40): 13431-13437, 2016 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-27643402

RESUMO

We report on the heterogeneous sensitization of metal-organic framework (MOF)-driven metal-embedded metal oxide (M@MO) complex catalysts onto semiconductor metal oxide (SMO) nanofibers (NFs) via electrospinning for markedly enhanced chemical gas sensing. ZIF-8-derived Pd-loaded ZnO nanocubes (Pd@ZnO) were sensitized on both the interior and the exterior of WO3 NFs, resulting in the formation of multiheterojunction Pd-ZnO and ZnO-WO3 interfaces. The Pd@ZnO loaded WO3 NFs were found to exhibit unparalleled toluene sensitivity (Rair/Rgas = 4.37 to 100 ppb), fast gas response speed (∼20 s) and superior cross-selectivity against other interfering gases. These results demonstrate that MOF-derived M@MO complex catalysts can be functionalized within an electrospun nanofiber scaffold, thereby creating multiheterojunctions, essential for improving catalytic sensor sensitization.

8.
Small ; 12(43): 5989-5997, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27622572

RESUMO

Rational design of nanostructures and efficient catalyst functionalization methods are critical to the realization of highly sensitive gas sensors. In order to solve these issues, two types of strategies are reported, i.e., (i) synthesis of peapod-like hollow SnO2 nanostructures (hollow 0D-1D SnO2 ) by using fluid dynamics of liquid Sn metal and (ii) metal-protein chelate driven uniform catalyst functionalization. The hollow 0D-1D SnO2 nanostructures have advantages in enhanced gas accessibility and higher surface areas. In addition to structural benefits, protein encapsulated catalytic nanoparticles result in the uniform catalyst functionalization on both hollow SnO2 spheres and SnO2 nanotubes due to their dynamic migration properties. The migration of catalysts with liquid Sn metal is induced by selective location of catalysts around Sn. On the basis of these structural and uniform functionalization of catalyst benefits, biomarker chemical sensors are developed, which deliver highly selective detection capability toward acetone and toluene, respectively. Pt or Pd loaded multidimensional SnO2 nanostructures exhibit outstanding acetone (R air /R gas = 93.55 @ 350 °C, 5 ppm) and toluene (R air /R gas = 9.25 @ 350 °C, 5 ppm) sensing properties, respectively. These results demonstrate that unique nanostructuring and novel catalyst loading method enable sensors to selectively detect biomarkers for exhaled breath sensors.


Assuntos
Quelantes/química , Metais/química , Nanotecnologia/instrumentação , Compostos de Estanho/química , Catálise , Nanofibras/química , Nanofibras/ultraestrutura , Nanosferas/química , Nanosferas/ultraestrutura , Platina/química , Povidona/química
9.
Nat Commun ; 12(1): 4294, 2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34257304

RESUMO

Conductive metal-organic framework (C-MOF) thin-films have a wide variety of potential applications in the field of electronics, sensors, and energy devices. The immobilization of various functional species within the pores of C-MOFs can further improve the performance and extend the potential applications of C-MOFs thin films. However, developing facile and scalable synthesis of high quality ultra-thin C-MOFs while simultaneously immobilizing functional species within the MOF pores remains challenging. Here, we develop microfluidic channel-embedded solution-shearing (MiCS) for ultra-fast (≤5 mm/s) and large-area synthesis of high quality nanocatalyst-embedded C-MOF thin films with thickness controllability down to tens of nanometers. The MiCS method synthesizes nanoscopic catalyst-embedded C-MOF particles within the microfluidic channels, and simultaneously grows catalyst-embedded C-MOF thin-film uniformly over a large area using solution shearing. The thin film displays high nitrogen dioxide (NO2) sensing properties at room temperature in air amongst two-dimensional materials, owing to the high surface area and porosity of the ultra-thin C-MOFs, and the catalytic activity of the nanoscopic catalysts embedded in the C-MOFs. Therefore, our method, i.e. MiCS, can provide an efficient way to fabricate highly active and conductive porous materials for various applications.

10.
Adv Mater ; 33(38): e2101216, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34342046

RESUMO

Conductive metal-organic frameworks (cMOFs) are emerging materials for various applications due to their high surface area, high porosity, and electrical conductivity. However, it is still challenging to develop cMOFs having high surface reactivity and durability. Here, highly active and stable cMOF are presented via the confinement of bimetallic nanoparticles (BNPs) in the pores of a 2D cMOF, where the confinement is guided by dipolar-interaction-induced site-specific nucleation. Heterogeneous metal precursors are bound to the pores of 2D cMOFs by dipolar interactions, and the subsequent reduction produces ultrasmall (≈1.54 nm) and well-dispersed PtRu NPs confined in the pores of the cMOF. PtRu-NP-decorated cMOFs exhibit significantly enhanced chemiresistive NO2 sensing performances, owing to the bimetallic synergies of PtRu NPs and the high surface area and porosity of cMOF. The approach paves the way for the synthesis of highly active and conductive porous materials via bimetallic and/or multimetallic NP loading.

11.
ACS Nano ; 14(6): 6407-6413, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32469489

RESUMO

Polyelemental nanoparticles (PE NPs) containing four or more elements in a single NP have intriguing intrinsic properties compared to their single-element counterparts. The fusion of diverse elements induces synergistic effects including new physical and chemical phenomena. However, conventional methods have not offered effective strategies for the uniform creation of PE NPs with high reproducibility. Recently, with advances in nanoscience, several new methods have been developed using both thermodynamic and kinetic approaches and, often, the interplay between them. In this Perspective, we highlight recent key advances in the design of PE NPs and their underlying formation mechanisms. We discuss the potential applications of PE NPs and the outlook and future directions for this field.

12.
ACS Nano ; 14(11): 14284-14322, 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33124428

RESUMO

Hydrogen (H2) is one of the next-generation energy sources because it is abundant in nature and has a high combustion efficiency that produces environmentally benign products (H2O). However, H2/air mixtures are explosive at H2 concentrations above 4%, thus any leakage of H2 must be rapidly and reliably detected at much lower concentrations to ensure safety. Among the various types of H2 sensors, chemiresistive sensors are one of the most promising sensing systems due to their simplicity and low cost. This review highlights the advances in H2 chemiresistors, including metal-, semiconducting metal oxide-, carbon-based materials, and other materials. The underlying sensing mechanisms for different types of materials are discussed, and the correlation of sensing performances with nanostructures, surface chemistry, and electronic properties is presented. In addition, the discussion of each material emphasizes key advances and strategies to develop superior H2 sensors. Furthermore, recent key advances in other types of H2 sensors are briefly discussed. Finally, the review concludes with a brief outlook, perspective, and future directions.

13.
ACS Nano ; 14(8): 9652-9661, 2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32700897

RESUMO

For rapid hydrogen gas (H2) sensing, we propose the facile synthesis of the hollow structure of Pt-decorated molybdenum disulfide (h-MoS2/Pt) using ultrathin (mono- or few-layer) two-dimensional nanosheets. The controlled amphiphilic nature of MoS2 surface produces ultrathin MoS2 NS-covered polystyrene particles via one-step Pickering emulsification. The incorporation of Pt nanoparticles (NPs) on the MoS2, followed by pyrolysis, generates the highly porous h-MoS2/Pt. This hollow hybrid structure produces sufficiently permeable pathways for H2 and maximizes the active sites of MoS2, while the Pt NPs on the hollow MoS2 induce catalytic H2 spillover during H2 sensing. The h-MoS2/Pt-based chemiresistors show sensitive H2 sensing performances with fast sensing speed (response, 8.1 s for 1% of H2 and 2.7 s for 4%; and recovery, 16.0 s for both 1% and 4% H2 at room temperature in the air). These results mark the highest H2 sensing speed among 2D material-based H2 sensors operated at room temperature in air. Our fabrication method of h-MoS2/Pt structure through Pickering emulsion provides a versatile platform applicable to various 2D material-based hollow structures and facilitates their use in other applications involving surface reactions.

14.
ACS Nano ; 14(9): 11394-11405, 2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32833436

RESUMO

Catalysis with single-atom catalysts (SACs) exhibits outstanding reactivity and selectivity. However, fabrication of supports for the single atoms with structural versatility remains a challenge to be overcome, for further steps toward catalytic activity augmentation. Here, we demonstrate an effective synthetic approach for a Pt SAC stabilized on a controllable one-dimensional (1D) metal oxide nano-heterostructure support, by trapping the single atoms at heterojunctions of a carbon nitride/SnO2 heterostructure. With the ultrahigh specific surface area (54.29 m2 g-1) of the nanostructure, we obtained maximized catalytic active sites, as well as further catalytic enhancement achieved with the heterojunction between carbon nitride and SnO2. X-ray absorption fine structure analysis and HAADF-STEM analysis reveal a homogeneous atomic dispersion of Pt species between carbon nitride and SnO2 nanograins. This Pt SAC system with the 1D nano-heterostructure support exhibits high sensitivity and selectivity toward detection of formaldehyde gas among state-of-the-art gas sensors. Further ex situ TEM analysis confirms excellent thermal stability and sinter resistance of the heterojunction-immobilized Pt single atoms.

15.
Adv Sci (Weinh) ; 6(21): 1900250, 2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31728270

RESUMO

Conductive porous materials having a high surface reactivity offer great promise for a broad range of applications. However, a general and scalable synthesis of such materials remains challenging. In this work, the facile synthesis of catalytic metal nanoparticles (NPs) embedded in 2D metal-organic frameworks (MOFs) is reported as highly active and conductive porous materials. After the assembly of 2D conductive MOFs (C-MOFs), i.e., Cu3(hexahydroxytriphenylene)2 [Cu3(HHTP)2], Pd or Pt NPs are functionalized within the cavities of C-MOFs by infiltration of metal ions and subsequent reduction. The unique structure of Cu3(HHTP)2 with a cavity size of 2 nm confines the bulk growth of metal NPs, resulting in ultra-small (≈2 nm) and well-dispersed metal NPs loaded in 2D C-MOFs. The Pd or Pt NPs-loaded Cu3(HHTP)2 exhibits remarkably improved NO2 sensing performance at room temperature due to the high reactivity of catalytic metal NPs and the high porosity of C-MOFs. The catalytic effect of Pd and Pt NPs on NO2 sensing of Cu3(HHTP)2, in terms of reaction rate kinetics and activation energy, is demonstrated.

16.
ACS Appl Mater Interfaces ; 11(37): 34100-34108, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31436079

RESUMO

Two-dimensional (2D) inorganic nanomaterials have attracted enormous interest in diverse research areas because of their intriguing physicochemical properties. However, reliable method for the synthesis and composition manipulation of polycrystalline inorganic nanosheets (NSs) are still considered grand challenges. Here, we report a robust synthetic route for producing various kinds of inorganic porous NSs with desired multiple components and precise compositional stoichiometry by employing tunicin, i.e., cellulose extracted from earth-abundant marine invertebrate shell waste. Cellulose fibrils can be tightly immobilized on graphene oxide (GO) NSs to form stable tunicin-loaded GO NSs, which are used as a sacrificial template for homogeneous adsorption of diverse metal precursors. After a subsequent pyrolysis process, 2D metallic or metal oxide NSs are formed without any structural collapse. The rationally designed tunicin-loaded GO NS templating route paves a new path for the simple preparation of multicompositional inorganic NSs for broad applications, including chemical sensing and electrocatalysis.

17.
ACS Nano ; 13(5): 6071-6082, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31063349

RESUMO

We report a flexible hydrogen sensing platform based on a single-strand yarn consisting of high-density electrospun nanofibers, on which nanograined Pd or Pd@Pt is coated via yarn spinning followed by sputter deposition. In general, Pd undergoes a phase transition to PdH x (α-PdH x at [H2] < 1% and ß-PdH x at [H2] > 2%), in which H atoms act as electron scattering centers, thus increasing the resistance. In our system, the sensors exhibit switchable H2 sensing behaviors, that is, (i) Δ R/ R0 > 0 at [H2] > 1% by the active electron scattering and (ii) Δ R/ R0 < 0 at [H2] < 1% derived from nanograined Pd effects. Due to high mechanical stability stemming from nanogranular morphologies of Pd, which is essential for enduring a huge volume expansion upon exposure to high-concentration H2, we could obtain a wide concentration range (4-0.0001%) H2 detection resolution. Moreover, an ultrathin Pt overlayer coated on Pd offers an accelerated H2 detection capability based on effective gas dissociation and activation properties. Furthermore, by virtue of the core (thread)-shell (nanofiber yarn) scaffold, long cycling reliability and flexibility were achieved. This facile and low-cost yarn fabrication method offers the development of single-strand thread-type wearable chemiresistors that possess a high surface area and open porosity, facilitating gas diffusion and reaction.

18.
ACS Appl Mater Interfaces ; 11(10): 10208-10217, 2019 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-30785264

RESUMO

The development of freestanding fiber-type chemiresistors, having high integration ability with various portable electronics including smart clothing systems, is highly demanding for the next-generation wearable sensing platforms. However, critical challenges stemming from the irreversible chemical sensing kinetics and weak reliability of the freestanding fiber-type chemiresistor hinder their practical use. In this work, for the first time, we report on the potential suitability of the freestanding and ultraporous reduced graphene oxide fiber functionalized with WO3 nanorods (porous WO3 NRs-RGO composite fiber) as a sensitive nitrogen dioxide (NO2) detector. By employing a tunicate cellulose nanofiber (TCNF), which is a unique animal-type cellulose, the numerous mesopores are formed on a wet-spun TCNF-GO composite fiber, unlike a bare GO fiber with dense surface structure. More interestingly, due to the superior wettability of TCNF, the aqueous tungsten precursor is uniformly adsorbed on an ultraporous TCNF-GO fiber, and subsequent heat treatment results in the thermal reduction of a TCNF-GO fiber and hierarchical growth of WO3 NRs perpendicular to the porous RGO fiber (porous WO3 NRs-RGO fiber). The freestanding porous WO3 NRs-RGO fiber shows a notable response to 1 ppm NO2. Furthermore, we successfully demonstrate reversible NO2 sensing characteristics of the porous WO3 NRs-RGO fiber, which is integrated on a wrist-type wearable sensing device.

19.
ACS Cent Sci ; 4(7): 929-937, 2018 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-30062121

RESUMO

Metal-organic frameworks (MOFs) are used as a new intriguing class of templates, which enable the creation of porous inorganic nanostructures via calcination. In this work, we first introduce in situ coupling of multidimensional MOFs for producing heterogeneous metal-oxide composite with multiple p-n junctions. Controlling relative ratios of two mixed solvents (water and ethanol), in zeolitic imidazolate framework (ZIF) growth, leads to the distinctive morphological evolution such as rod, sheet, and polyhedron particles. One-pot hybridization of ZIF-8 (sheet) with ZIF-67 (rods) results in the generation of hierarchically assembled 1D ZIF-67 rods anchored on a 2D ZIF-8 sheet. Through the calcination of such hybridized ZIFs, we successfully prepared hierarchically assembled 1D Co3O4 rods immobilized in a 2D ZnO sheet, possessing numerous n-type ZnO/p-type Co3O4 heterogeneous interfaces. This unique structure offers a remarkably enhanced chemiresistive sensing performance (Ra/Rg = 29 at 5 ppm acetone).

20.
Nanoscale ; 10(28): 13713-13721, 2018 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-29989640

RESUMO

In this work, we introduce a chitosan-Pt complex (CS-Pt) as an effective template for catalytic Pt sensitization and creation of abundant mesopores in SnO2 nanofibers (NFs). The Pt particles encapsulated by the CS exhibit ultrasmall size (∼2.6 nm) and high dispersion characteristics due to repulsion between CS molecules. By combining CS-Pt with electrospinning, mesoporous SnO2 NFs uniformly functionalized with the Pt catalyst (CS-Pt@SnO2 NFs) are synthesized. Particularly, numerous mesopores with diameters of ∼20 nm form through the decomposition of CS, while a small SnO2 grain size (14.32 nm) is achieved by the pinning effect of CS. It is observed that CS-Pt@SnO2 NFs exhibit outstanding response (Rair/Rgas = 141.92 at 5 ppm), excellent selectivity, stability, and fast response (12 s)/recovery (44 s) speed toward 1 ppm of acetone at 350 °C and high humidity (90% RH). In addition, by applying an exponential fitting tool to experimental response values toward 0.1-5 ppm of acetone, it is estimated that CS-Pt@SnO2 NFs can detect 5 ppb of acetone with a notable response (Rair/Rgas = 2.9). Furthermore, the sensor array based on CS-Pt@SnO2 NFs, CS-driven SnO2 NFs, polyol-Pt loaded SnO2 NFs, and dense SnO2 NFs obviously classifies simulated diabetic breath and healthy human breath by using a pattern recognition tool. These results clearly demonstrate that mesoporous SnO2 NFs, particularly functionalized with CS-Pt templated nanocatalysts, open up a new class of sensing layers offering high sensitivity and selectivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA