Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Mol Ther ; 28(2): 466-478, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31864907

RESUMO

Although the generation of ETV2-induced endothelial cells (iECs) from human fibroblasts serves as a novel therapeutic strategy in regenerative medicine, the process is inefficient, resulting in incomplete iEC angiogenesis. Therefore, we employed chromatin immunoprecipitation (ChIP) sequencing and identified molecular mechanisms underlying ETV2-mediated endothelial transdifferentiation to efficiently produce iECs retaining appropriate functionality in long-term culture. We revealed that the majority of ETV2 targets in human fibroblasts are related to vasculature development and signaling transduction pathways, including Rap1 signaling. From a screening of signaling pathway modulators, we confirmed that forskolin facilitated efficient and rapid iEC reprogramming via activation of the cyclic AMP (cAMP)/exchange proteins directly activated by cAMP (EPAC)/RAP1 axis. The iECs obtained via cAMP signaling activation showed superior angiogenesis in vivo as well as in vitro. Moreover, these cells could form aligned endothelium along the vascular lumen ex vivo when seeded into decellularized liver scaffold. Overall, our study provided evidence that the cAMP/EPAC/RAP1 axis is required for the efficient generation of iECs with angiogenesis potential.


Assuntos
AMP Cíclico/metabolismo , Células Endoteliais/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Neovascularização Fisiológica , Transdução de Sinais , Fatores de Transcrição/metabolismo , Reprogramação Celular/genética , Expressão Ectópica do Gene , Fibroblastos/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Imuno-Histoquímica , Isquemia/genética , Isquemia/metabolismo , Isquemia/patologia , Fatores de Transcrição/genética , Proteínas rap1 de Ligação ao GTP/metabolismo
2.
Glia ; 64(12): 2291-2305, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27687148

RESUMO

Microglia can aggravate olfactory dysfunction by mediating neuronal death in the olfactory bulb (OB) of a murine model of Niemann-Pick disease type C1 (NPC1), a fatal neurodegenerative disorder accompanied by lipid trafficking defects. In this study, we focused on the crosstalk between neurons and microglia to elucidate the mechanisms underlying extensive microgliosis in the NPC1-affected brain. Microglia in the OB of NPC1 mice strongly expressed CX3C chemokine receptor 1 (Cx3cr1), a specific receptor for the neural chemokine C-X3-C motif ligand 1 (Cx3cl1). In addition, a high level of Cx3cl1 was detected in NPC1 mouse-derived CSF due to enhanced catalytic activity of Cathepsin S (Ctss), which is responsible for Cx3cl1 secretion. Notably, nasal delivery of Cx3cl1 neutralizing antibody or Ctss inhibitor could inhibit the Cx3cl1-Cx3cr1 interaction and support neuronal survival through the suppression of microglial activation, leading to an improvement in the olfactory function in NPC1 mice. Relevant in vitro experiments revealed that intracellular cholesterol accumulation could act as a strong inducer of abnormal Ctss activation and, in turn, stimulated the Cx3cl1-Cx3cr1 axis in microglia via p38 mitogen-activated protein kinase signaling. Our data address the significance of Cx3cl1-Cx3cr1 interaction in the development of microglial neurotoxicity and suggest that Ctss is a key upstream regulator. Therefore, this study contributes to a better understanding of the crosstalk between neurons and microglia in the development of the neurodegeneration and provides a new perspective for the management of olfactory deficits and other microglia-dependent neuropathies. GLIA 2016;64:2291-2305.


Assuntos
Receptor 1 de Quimiocina CX3C/metabolismo , Catepsinas/metabolismo , Quimiocina CX3CL1/metabolismo , Microglia/metabolismo , Doença de Niemann-Pick Tipo A/complicações , Transtornos do Olfato/etiologia , Transtornos do Olfato/patologia , Animais , Receptor 1 de Quimiocina CX3C/genética , Proteínas de Ligação ao Cálcio/metabolismo , Células Cultivadas , Quimiocina CX3CL1/genética , Modelos Animais de Doenças , Comportamento Alimentar , Técnicas In Vitro , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Proteínas dos Microfilamentos/metabolismo , Proteína C1 de Niemann-Pick , Doença de Niemann-Pick Tipo A/genética , Bulbo Olfatório/citologia , Técnicas de Cultura de Órgãos , Proteínas/genética , Proteínas/metabolismo , Transdução de Sinais/genética , Regulação para Cima/genética
3.
Biofabrication ; 16(2)2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38277677

RESUMO

Conventional 2D or even recently developed 3Din vitroculture models for hypothalamus and pituitary gland cannot successfully recapitulate reciprocal neuroendocrine communications between these two pivotal neuroendocrine tissues known to play an essential role in controlling the body's endocrine system, survival, and reproduction. In addition, most currentvitroculture models for neuroendocrine tissues fail to properly reflect their complex multicellular structure. In this context, we developed a novel microscale chip platform, termed the 'hypothalamic-pituitary (HP) axis-on-a-chip,' which integrates various cellular components of the hypothalamus and pituitary gland with biomaterials such as collagen and hyaluronic acid. We used non-toxic blood coagulation factors (fibrinogen and thrombin) as natural cross-linking agents to increase the mechanical strength of biomaterials without showing residual toxicity to overcome drawbacks of conventional chemical cross-linking agents. Furthermore, we identified and verified SERPINB2 as a reliable neuroendocrine toxic marker, with its expression significantly increased in both hypothalamus and pituitary gland cells following exposure to various types of toxins. Next, we introduced SERPINB2-fluorescence reporter system into loaded hypothalamic cells and pituitary gland cells within each chamber of the HP axis on a chip, respectively. By incorporating this SERPINB2 detection system into the loaded hypothalamic and pituitary gland cells within our chip platform, Our HP axis-on-chip platform can better mimic reciprocal neuroendocrine crosstalk between the hypothalamus and the pituitary gland in the brain microenvironments with improved efficiency in evaluating neuroendocrine toxicities of certain drug candidates.


Assuntos
Sistemas Microfisiológicos , Hipófise , Hipófise/metabolismo , Hipotálamo/metabolismo , Encéfalo , Materiais Biocompatíveis/metabolismo
4.
Exp Mol Med ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38945952

RESUMO

The reciprocal crosstalk between testicular Sertoli and Leydig cells plays a vital role in supporting germ cell development and maintaining testicular characteristics and spermatogenesis. Conventional 2D and the recent 3D assay systems fail to accurately replicate the dynamic interactions between these essential endocrine cells. Furthermore, most in vitro testicular tissue models lack the ability to capture the complex multicellular nature of the testis. To address these limitations, we developed a 3D multicellular testis-on-a-chip platform that effectively demonstrates the reciprocal crosstalk between Sertoli cells and the adjacent Leydig cells while incorporating various human testicular tissue constituent cells and various natural polymers infused with blood coagulation factors. Additionally, we identified SERPINB2 as a biomarker of male reproductive toxicity that is activated in both Sertoli and Leydig cells upon exposure to various toxicants. Leveraging this finding, we designed a fluorescent reporter-conjugated toxic biomarker detection system that enables both an intuitive and quantitative assessment of material toxicity by measuring the converted fluorescence intensity. By integrating this fluorescent reporter system into the Sertoli and Leydig cells within our 3D multicellular chip platform, we successfully developed a testis-on-chip model that can be utilized to evaluate the male reproductive toxicity of potential drug candidates. This innovative approach holds promise for advancing toxicity screening and reproductive research.

5.
Biomater Res ; 27(1): 33, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37085887

RESUMO

BACKGROUND: The endometrium, the inner lining of the uterine cavity, plays essential roles in embryo implantation and its subsequent development. Although some positive results were preliminarily archived, the regeneration of damaged endometrial tissues by administrating stem cells only is very challenging due to the lack of specific microenvironments and their low attachment rates at the sites of injury. In this context, various biomaterial-based scaffolds have been used to overcome these limitations by providing simple structural support for cell attachment. However, these scaffold-based strategies also cannot properly reflect patient tissue-specific structural complexity and thus show only limited therapeutic effects. METHOD: Therefore, in the present study, we developed a customizable Lego-like multimodular endometrial tissue architecture by assembling individually fabricated tissue blocks. RESULTS: Each tissue block was fabricated by incorporating biodegradable biomaterials and certain endometrial constituent cells. Each small tissue block was effectively fabricated by integrating conventional mold casting and 3D printing techniques. The fabricated individual tissue blocks were properly assembled into a larger customized tissue architecture. This structure not only properly mimics the patient-specific multicellular microenvironment of the endometrial tissue but also properly responds to key reproductive hormones in a manner similar to the physiological functions. CONCLUSION: This customizable modular tissue assembly allows easy and scalable configuration of a complex patient-specific tissue microenvironment, thus accelerating various tissue regeneration procedures.

6.
Cell Death Discov ; 9(1): 32, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36697403

RESUMO

A correlation between COVID-19 and Alzheimer's disease (AD) has been proposed recently. Although the number of case reports on neuroinflammation in COVID-19 patients has increased, studies of SARS-CoV-2 neurotrophic pathology using brain organoids have restricted recapitulation of those phenotypes due to insufficiency of immune cells and absence of vasculature. Cerebral pericytes and endothelial cells, the major components of blood-brain barrier, express viral entry receptors for SARS-CoV-2 and response to systemic inflammation including direct cell death. To overcome the limitations, we developed cortical-blood vessel assembloids by fusing cortical organoid with blood vessel organoid to provide vasculature to brain organoids a nd obtained the characteristics of increased expression of microglia and astrocytes in brain organoids. Furthermore, we observed AD pathologies, including ß-amyloid plaques, which were affected by the inflammatory response from SARS-CoV-2 infection. These findings provide an advanced platform to investigate human neurotrophic diseases, including COVID-19, and suggest that neuroinflammation caused by viral infection facilitates AD pathology.

7.
Mol Neurobiol ; 60(1): 145-159, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36242734

RESUMO

Although a couple of studies have reported that mutant superoxide dismutase 1 (SOD1), one of the causative genes of familial amyotrophic lateral, interacts physically with lysyl-tRNA synthetase (KARS1) by a gain of function, there is limited evidence regarding the detailed mechanism about how the interaction leads to neuronal cell death. Our results indicated that the aminoacyl-tRNA synthetase-interacting multi-functional protein 2 (AIMP2) mediated cell death upon the interplay between mutant SOD1 and KARS1 in ALS. Binding of mutant SOD1 with KARS1 led to the release of AIMP2 from its original binding partner KARS1, and the free form of AIMP2 induced TRAF2 degradation followed by TNF-α-induced cell death. We also suggest a therapeutic application that overexpression of DX2, the exon 2-deleted antagonistic splicing variant of AIMP2 (AIMP2-DX2), reduced neuronal cell death in the ALS mouse model. Expression of DX2 suppressed TRAF2 degradation and TNF-α-induced cell death by competing mode of action against full-length AIMP2. Motor neuron differentiated form iPSC showed a resistance in neuronal cell death after DX2 administration. Further, intrathecal administration of DX2-coding adeno-associated virus (AAV) improved locomotive activity and survival in a mutant SOD1-induced ALS mouse model. Taken together, these results indicated that DX2 could prolong life span and delay the ALS symptoms through compensation in neuronal inflammation.


Assuntos
Esclerose Lateral Amiotrófica , Proteínas Nucleares , Animais , Camundongos , Morte Celular , Linhagem Celular Tumoral , Mutação , Proteínas Nucleares/metabolismo , Superóxido Dismutase-1/metabolismo , Fator 2 Associado a Receptor de TNF/genética , Fator 2 Associado a Receptor de TNF/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Isoformas de Proteínas
8.
Int J Stem Cells ; 15(1): 85-94, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35220294

RESUMO

BACKGROUND AND OBJECTIVES: Brain organoids have the potential to improve our understanding of brain development and neurological disease. Despite the importance of brain organoids, the effect of vascularization on brain organoids is largely unknown. The objective of this study is to develop vascularized organoids by assembling vascular spheroids with cerebral organoids. METHODS AND RESULTS: In this study, vascularized spheroids were generated from non-adherent microwell culture system of human umbilical vein endothelial cells, human dermal fibroblasts and human umbilical cord blood derived mesenchymal stem cells. These vascular spheroids were used for fusion with iPSCs induced cerebral organoids. Immunostaining studies of vascularized organoids demonstrated well organized vascular structures and reduced apoptosis. We showed that the vascularization in cerebral organoids up-regulated the Wnt/ß-catenin signaling. CONCLUSIONS: We developed vascularized cerebral organoids through assembly of brain organoids with vascular spheroids. This method could not only provide a model to study human cortical development but also represent an opportunity to explore neurological disease.

9.
Cells ; 10(2)2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33504071

RESUMO

Brain organoids have emerged as a novel model system for neural development, neurodegenerative diseases, and human-based drug screening. However, the heterogeneous nature and immature neuronal development of brain organoids generated from pluripotent stem cells pose challenges. Moreover, there are no previous reports of a three-dimensional (3D) hypoxic brain injury model generated from neural stem cells. Here, we generated self-organized 3D human neural organoids from adult dermal fibroblast-derived neural stem cells. Radial glial cells in these human neural organoids exhibited characteristics of the human cerebral cortex trend, including an inner (ventricular zone) and an outer layer (early and late cortical plate zones). These data suggest that neural organoids reflect the distinctive radial organization of the human cerebral cortex and allow for the study of neuronal proliferation and maturation. To utilize this 3D model, we subjected our neural organoids to hypoxic injury. We investigated neuronal damage and regeneration after hypoxic injury and reoxygenation. Interestingly, after hypoxic injury, reoxygenation restored neuronal cell proliferation but not neuronal maturation. This study suggests that human neural organoids generated from neural stem cells provide new opportunities for the development of drug screening platforms and personalized modeling of neurodegenerative diseases, including hypoxic brain injury.


Assuntos
Lesões Encefálicas/patologia , Hipóxia Encefálica/patologia , Modelos Biológicos , Neurônios/patologia , Organoides/patologia , Adulto , Biomarcadores/metabolismo , Córtex Cerebral/patologia , Humanos , Oxigênio/metabolismo
10.
Cells ; 10(5)2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-34065411

RESUMO

Three-dimensional (3D) bioprinting is a promising technology to establish a 3D in vitro hepatic model that holds great potential in toxicological evaluation. However, in current hepatic models, the central area suffers from hypoxic conditions, resulting in slow and weak metabolism of drugs and toxins. It remains challenging to predict accurate drug effects in current bioprinted hepatic models. Here, we constructed a hexagonal bioprinted hepatic construct and incorporated a spinning condition with continuous media stimuli. Under spinning conditions, HepG2 cells in the bioprinted hepatic construct exhibited enhanced proliferation capacity and functionality compared to those under static conditions. Additionally, the number of spheroids that play a role in boosting drug-induced signals and responses increased in the bioprinted hepatic constructs cultured under spinning conditions. Moreover, HepG2 cells under spinning conditions exhibited intensive TGFß-induced epithelial-to-mesenchymal transition (EMT) and increased susceptibility to acetaminophen (APAP)-induced hepatotoxicity as well as hepatotoxicity prevention by administration of N-acetylcysteine (NAC). Taken together, the results of our study demonstrate that the spinning condition employed during the generation of bioprinted hepatic constructs enables the recapitulation of liver injury and repair phenomena in particular. This simple but effective culture strategy facilitates bioprinted hepatic constructs to improve in vitro modeling for drug effect evaluation.


Assuntos
Biomimética , Bioimpressão/instrumentação , Proliferação de Células , Fígado/patologia , Modelos Biológicos , Impressão Tridimensional/estatística & dados numéricos , Engenharia Tecidual , Acetaminofen/toxicidade , Acetilcisteína/farmacologia , Analgésicos não Narcóticos/toxicidade , Sequestradores de Radicais Livres/farmacologia , Células Hep G2 , Humanos , Hidrogéis , Técnicas In Vitro , Fígado/efeitos dos fármacos , Alicerces Teciduais/química , Testes de Toxicidade
11.
Stem Cell Res Ther ; 12(1): 482, 2021 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-34454603

RESUMO

BACKGROUND: Human mesenchymal stem cells (hMSCs) therapy has recently been considered a promising treatment for atopic dermatitis (AD) due to their immunomodulation and tissue regeneration ability. In our previous studies, we demonstrated that hMSCs alleviate allergic inflammation in murine AD model by inhibiting the activation of mast cells and B cells. Also our phase I/IIa clinical trial showed clinical efficacy and safety of hMSCs in moderate-to-severe adult AD patients. However, hMSCs therapy against atopic dermatitis have had poor results in clinical field. Therefore, we investigated the reason behind this result. We hypothesized that drug-cell interaction could interfere with the therapeutic efficacy of stem cells, and investigated whether coadministration with pimecrolimus, one of the topical calcineurin inhibitors, could influence the therapeutic potential of human umbilical cord blood mesenchymal stem cells (hUCB-MSCs) in AD. METHODS: hUCB-MSCs were subcutaneously injected to AD-induced mice with or without pimecrolimus topical application. To examine whether pimecrolimus influenced the immunomodulatory activity of hUCB-MSCs, hUCB-MSCs were treated with pimecrolimus. RESULTS: Pimecrolimus disturbed the therapeutic effect of hUCB-MSCs when they were co-administered in murine AD model. Moreover, the inhibitory functions of hUCB-MSCs against type 2 helper T (Th2) cell differentiation and mast cell activation were also deteriorated by pimecrolimus treatment. Interestingly, we found that pimecrolimus decreased the production of PGE2, one of the most critical immunomodulatory factors in hUCB-MSCs. And we demonstrated that pimecrolimus downregulated COX2-PGE2 axis by inhibiting nuclear translocation of NFAT3. CONCLUSIONS: Coadministration of pimecrolimus with hMSCs could interfere with the therapeutic efficacy of hMSCs in atopic dermatitis, and this is the first study that figured out the interaction of hMSCs with other drugs in cell therapy of atopic dermatitis. Therefore, this study might give rise to improvement of the clinical application of hMSCs therapy and facilitate the widespread application of hMSCs in clinical field.


Assuntos
Dermatite Atópica , Células-Tronco Mesenquimais , Animais , Ciclo-Oxigenase 2 , Dermatite Atópica/tratamento farmacológico , Humanos , Camundongos , Tacrolimo/análogos & derivados , Tacrolimo/farmacologia
12.
Biomaterials ; 265: 120417, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32987272

RESUMO

Liver tissue engineering offers a promising strategy for liver failure patients. Since transplantation rejection resulting in vessel thrombosis is regarded as a major hurdle, vascular reconstruction is one of indispensable requirements of whole organ engineering. Here we demonstrated a novel strategy for reconstruction of a vascularized bioengineered human liver (VBHL) using decellularized liver scaffolds in an efficient manner. First we achieved fully functional endothelial coverage of scaffolds by adopting the anti-CD31 aptamer as a potent coating agent for re-endothelialization. Through an ex vivo human blood perfusion that recapitulates the blood coagulation response in humans, we demonstrated significantly reduced platelet aggregation in anti-CD31 aptamer coated scaffolds. We then produced VBHL constructs using liver parenchymal cells and nonparenchymal cells, properly organized into liver-like structures with an aligned vasculature. Interestingly, VBHL constructs displayed prominently enhanced long-term liver-specific functions that are affected by vascular functionality. The VBHL constructs formed perfusable vessel networks in vivo as evidenced by the direct vascular connection between the VBHL constructs and the renal circulation. Furthermore, heterotopic transplantation of VBHL constructs supported liver functions in a rat model of liver fibrosis. Overall, we proposed a new strategy to generate transplantable bioengineered livers characterized by highly functional vascular reconstruction.


Assuntos
Células Endoteliais , Alicerces Teciduais , Animais , Engenharia Biomédica , Humanos , Fígado , Ratos , Engenharia Tecidual
13.
Cell Death Dis ; 11(12): 1059, 2020 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-33311479

RESUMO

Recent studies on developing three-dimensional (3D) brain organoids from stem cells have allowed the generation of in vitro models of neural disease and have enabled the screening of drugs because these organoids mimic the complexity of neural tissue. Niemann-Pick disease, type C (NPC) is a neurodegenerative lysosomal storage disorder caused by mutations in the NPC1 or NPC2. The pathological features underlying NPC are characterized by the abnormal accumulation of cholesterol in acidic compartments, including late endosomes and lysosomes. Due to the inaccessibility of brain tissues from human NPC patients, we developed NPC brain organoids with induced neural stem cells from NPC patient-derived fibroblasts. NPC organoids exhibit significantly reduced size and proliferative ability, which are accompanied by accumulation of cholesterol, impairment in neuronal differentiation, and autophagic flux and dysfunction of lysosomes; therefore, NPC organoids can recapitulate the main phenotypes of NPC patients. Furthermore, these pathological phenotypes observed in NPC organoids were reversed by treatment with valproic acid and HPBCD, which are known to be an effective treatment for several neurodegenerative diseases. Our data present patient-specific phenotypes in 3D organoid-based models of NPC and highlight the application of this model to drug screening in vitro.


Assuntos
Encéfalo/patologia , Modelos Biológicos , Células-Tronco Neurais/patologia , Doença de Niemann-Pick Tipo C/patologia , Organoides/patologia , Autofagia/efeitos dos fármacos , Biomarcadores/metabolismo , Contagem de Células , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Células-Tronco Neurais/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Doença de Niemann-Pick Tipo C/genética , Organoides/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Ácido Valproico/farmacologia
14.
Sci Rep ; 10(1): 1572, 2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-32005848

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that is characterized by loss of motor neurons and degeneration of neuromuscular junctions. To improve disease progression, previous studies have suggested many options that have shown beneficial effects in diseases, especially stem cell therapy. In this study, we used repeated intramuscular transplantation of human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) and observed positive effects on muscle atrophy and oxidative stress. In an in vivo study, motor function, body weight and survival rate were assessed, and skeletal muscle tissues were analyzed by western blotting and immunohistochemistry. After intramuscular transplantation, the hUCB-MSCs survived within the skeletal muscle for at least 1 week. Transplantation ameliorated muscle atrophy and the rate of neuromuscular degeneration in skeletal muscle through reductions in intracellular ROS levels. Both expression of skeletal muscle atrophy markers, muscle atrophy F-box (MAFbx)/atrogin1 and muscle RING finger 1 (MuRF1), were also reduced; however, the reductions were not significant. Moreover, transplantation of hUCB-MSCs improved protein synthesis and inhibited the iNOS/NO signaling pathway through AMPK activation. Our results suggest that repeated intramuscular transplantation of hUCB-MSCs can be a practical option for stem cell therapy for ALS.


Assuntos
Esclerose Lateral Amiotrófica/terapia , Transplante de Células-Tronco de Sangue do Cordão Umbilical/métodos , Sistema de Sinalização das MAP Quinases , Transplante de Células-Tronco Mesenquimais/métodos , Destreza Motora , Superóxido Dismutase-1/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Humanos , Injeções Intramusculares , Camundongos , Camundongos Transgênicos , Atrofia Muscular/terapia , Mioblastos/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Espécies Reativas de Oxigênio/metabolismo
15.
J Acupunct Meridian Stud ; 11(4): 133-136, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29879473

RESUMO

Homing of stem cells (SCs) to desired targets such as injured tissues remains a lingering problem in cell-based therapeutics. Studies on the biodistribution of intravenously administered SCs have shown the inefficacy of blood vessels as the homing path because most of the injected SCs are captured in the capillary beds of the lungs. We considered an alternative administration method using the acupuncture meridians or the primo vascular system. We injected SCs at the acupoint Zusanli (ST-36) below the knee of a nude mouse with a spinal cord injured at the thoracic T9-10 vertebrae. The SCs migrated from the ST-36, along the sciatic nerve, the lumbar 4-5, and then the spinal cord to the injury point T9-10. The SCs were not randomly scattered but were rather well aligned like marathon race runners, along the primo vascular system route toward the injury point. We observed the SCs at 1, 3, 6, 9, 12, and 15 hours after injection. The fast runners among the injected SCs took about 6 hours to reach the sciatic nerve, about 9 hours to reach the lumbar 4-5, and about 15 hours to reach the injury point T9-10.


Assuntos
Pontos de Acupuntura , Traumatismos da Medula Espinal/terapia , Animais , Humanos , Masculino , Meridianos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Nervo Isquiático , Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/fisiopatologia , Transplante de Células-Tronco , Células-Tronco/citologia , Distribuição Tecidual
16.
J Vet Sci ; 18(4): 487-497, 2017 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-28385005

RESUMO

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by selective death of motor neurons in the central nervous system. The main cause of the disease remains elusive, but several mutations have been associated with the disease process. In particular, mutant superoxide dismutase 1 (SOD1) protein causes oxidative stress by activating glia cells and contributes to motor neuron degeneration. KCHO-1, a novel herbal combination compound, contains 30% ethanol and the extracts of nine herbs that have been commonly used in traditional medicine to prevent fatigue or inflammation. In this study, we investigated whether KCHO-1 administration could reduce oxidative stress in an ALS model. KCHO-1 administered to ALS model mice improved motor function and delayed disease onset. Furthermore, KCHO-1 administration reduced oxidative stress through gp91phox and the MAPK pathway in both classically activated microglia and the spinal cord of hSOD1G93A transgenic mice. The results suggest that KCHO-1 can function as an effective therapeutic agent for ALS by reducing oxidative stress.


Assuntos
Esclerose Lateral Amiotrófica/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Neurônios Motores/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Preparações de Plantas/farmacologia , Medula Espinal/efeitos dos fármacos , Esclerose Lateral Amiotrófica/fisiopatologia , Animais , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA