Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Expert Rev Proteomics ; 21(1-3): 65-80, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38363709

RESUMO

INTRODUCTION: Development of new methods is essential to make great leaps in science, opening up new avenues for research, but the process behind method development is seldom described. AREAS COVERED: Over the last twenty years we have been developing several new methods, such as in situ PLA, proxHCR, and MolBoolean, using oligonucleotide-conjugated antibodies to visualize protein-protein interactions. Herein, we describe the rationale behind the oligonucleotide systems of these methods. The main objective of this paper is to provide researchers with a description on how we thought when we designed those methods. We also describe in detail how the methods work and how one should interpret results. EXPERT OPINION: Understanding how the methods work is important in selecting an appropriate method for your experiments. We also hope that this paper may be an inspiration for young researchers to enter the field of method development. Seeing a problem is a motivation to develop a solution.


Assuntos
Anticorpos , Oligonucleotídeos , Humanos , Oligonucleotídeos/genética
2.
Infection ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38896372

RESUMO

PURPOSE: There is evidence that lower activity of the RAF/MEK/ERK network is associated with positive outcomes in mild and moderate courses of COVID-19. The effect of this cascade in COVID-19 sepsis is still undetermined. Therefore, we tested the hypothesis that activity of the RAF/MEK/ERK network in COVID-19-induced sepsis is associated with an impact on 30-day survival. METHODS: We used biomaterial from 81 prospectively recruited patients from the multicentric CovidDataNet.NRW-study cohort (German clinical trial registry: DRKS00026184) with their collected medical history, vital signs, laboratory parameters, microbiological findings and patient outcome. ERK activity was measured by evaluating ERK phosphorylation using a Proximity Ligation Assay. RESULTS: An increased ERK activity at 4 days after diagnosis of COVID-19-induced sepsis was associated with a more than threefold increased chance of survival in an adjusted Cox regression model. ERK activity was independent of other confounders such as Charlson Comorbidity Index or SOFA score (HR 0.28, 95% CI 0.10-0.84, p = 0.02). CONCLUSION: High activity of the RAF/MEK/ERK network during the course of COVID-19 sepsis is a protective factor and may indicate recovery of the immune system. Further studies are needed to confirm these results.

3.
Crit Care ; 28(1): 270, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39135180

RESUMO

BACKGROUND: Sepsis presents a challenge due to its complex immune responses, where balance between inflammation and anti-inflammation is critical for survival. Glucocorticoid-induced leucine zipper (GILZ) is key protein in achieving this balance, suppressing inflammation and mediating glucocorticoid response. This study aims to investigate GILZ transcript variants in sepsis patients and explore their potential for patient stratification and optimizing glucocorticoid therapy. METHODS: Sepsis patients meeting the criteria outlined in Sepsis-3 were enrolled, and RNA was isolated from whole blood samples. Quantitative mRNA expression of GILZ transcript variants in both sepsis patient samples (n = 121) and the monocytic U937 cell line (n = 3), treated with hydrocortisone and lipopolysaccharides, was assessed using quantitative PCR (qPCR). RESULTS: Elevated expression of GILZ transcript variant 1 (GILZ TV 1) serves as a marker for heightened 30-day mortality in septic patients. Increased levels of GILZ TV 1 within the initial day of sepsis onset are associated with a 2.2-[95% CI 1.2-4.3] fold rise in mortality, escalating to an 8.5-[95% CI 2.0-36.4] fold increase by day eight. GILZ TV1 expression is enhanced by glucocorticoids in cell culture but remains unaffected by inflammatory stimuli such as LPS. In septic patients, GILZ TV 1 expression increases over the course of sepsis and in response to hydrocortisone treatment. Furthermore, a high expression ratio of transcript variant 1 relative to all GILZ mRNA TVs correlates with a 2.3-fold higher mortality rate in patients receiving hydrocortisone treatment. CONCLUSION: High expression of GILZ TV 1 is associated with a higher 30-day sepsis mortality rate. Moreover, a high expression ratio of GILZ TV 1 relative to all GILZ transcript variants is a parameter for identifying patient subgroups in which hydrocortisone may be contraindicated.


Assuntos
Hidrocortisona , Sepse , Fatores de Transcrição , Humanos , Sepse/tratamento farmacológico , Sepse/mortalidade , Hidrocortisona/uso terapêutico , Hidrocortisona/administração & dosagem , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Fatores de Transcrição/análise , Fatores de Transcrição/genética
4.
Int J Mol Sci ; 25(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38612684

RESUMO

The variability in mortality in sepsis could be a consequence of genetic variability. The glucocorticoid system and the intermediate TSC22D3 gene product-glucocorticoid-induced leucine zipper-are clinically relevant in sepsis, which is why this study aimed to clarify whether TSC22D3 gene polymorphisms contribute to the variance in sepsis mortality. Blood samples for DNA extraction were obtained from 455 patients with a sepsis diagnosis according to the Sepsis-III criteria and from 73 control subjects. A SNP TaqMan assay was used to detect single-nucleotide polymorphisms (SNPs) in the TSC22D3 gene. Statistical and graphical analyses were performed using the SPSS Statistics and GraphPad Prism software. C-allele carriers of rs3747406 have a 2.07-fold higher mortality rate when the sequential organ failure assessment (SOFA) score is higher than eight. In a multivariate COX regression model, the SNP rs3747406 with a SOFA score ≥ 8 was found to be an independent risk factor for 30-day survival in sepsis. The HR was calculated to be 2.12, with a p-value of 0.011. The wild-type allele was present in four out of six SNPs in our cohort. The promoter of TSC22D3 was found to be highly conserved. However, we discovered that the C-allele of rs3747406 poses a risk for sepsis mortality for SOFA Scores higher than 6.


Assuntos
Escores de Disfunção Orgânica , Sepse , Humanos , Glucocorticoides , Zíper de Leucina , Polimorfismo de Nucleotídeo Único , Sepse/genética
5.
Int J Mol Sci ; 25(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38203778

RESUMO

Sepsis is a life-threatening condition caused by the dysregulated host response to infection. Novel therapeutic options are urgently needed and aquaporin inhibitors could suffice as aquaporin 5 (Aqp5) knockdown provided enhanced sepsis survival in a murine sepsis model. Potential AQP5 inhibitors provide sulfonamides and their derivatives. In this study, we tested the hypothesis that sulfonamides reduce AQP5 expression in different conditions. The impact of sulfonamides on AQP5 expression and immune cell migration was examined in cell lines REH and RAW 264.7 by qPCR, Western blot and migration assay. Subsequently, whether furosemide and methazolamide are capable of reducing AQP5 expression after LPS incubation was investigated in whole blood samples of healthy volunteers. Incubation with methazolamide (10-5 M) and furosemide (10-6 M) reduced AQP5 mRNA and protein expression by about 30% in REH cells. Pre-incubation of the cells with methazolamide reduced cell migration towards SDF1-α compared to non-preincubated cells to control level. Pre-incubation with methazolamide in PBMCs led to a reduction in LPS-induced AQP5 expression compared to control levels, while furosemide failed to reduce it. Methazolamide appears to reduce AQP5 expression and migration of immune cells. However, after LPS administration, the reduction in AQP5 expression by methazolamide is no longer possible. Hence, our study indicates that methazolamide is capable of reducing AQP5 expression and has the potential to be used in sepsis prophylaxis.


Assuntos
Metazolamida , Sepse , Humanos , Animais , Camundongos , Furosemida , Lipopolissacarídeos , Sulfonamidas , Movimento Celular , Sulfanilamida , Sepse/tratamento farmacológico , RNA Mensageiro/genética , Aquaporina 5/genética
6.
Int J Mol Sci ; 25(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38279209

RESUMO

Sepsis involves an immunological systemic response to a microbial pathogenic insult, leading to a cascade of interconnected biochemical, cellular, and organ-organ interaction networks. Potential drug targets can depict aquaporins, as they are involved in immunological processes. In immune cells, AQP3 and AQP9 are of special interest. In this study, we tested the hypothesis that these aquaporins are expressed in the blood cells of septic patients and impact sepsis survival. Clinical data, routine laboratory parameters, and blood samples from septic patients were analyzed on day 1 and day 8 after sepsis diagnosis. AQP expression and cytokine serum concentrations were measured. AQP3 mRNA expression increased over the duration of sepsis and was correlated with lymphocyte count. High AQP3 expression was associated with increased survival. In contrast, AQP9 expression was not altered during sepsis and was correlated with neutrophil count, and low levels of AQP9 were associated with increased survival. Furthermore, AQP9 expression was an independent risk factor for sepsis lethality. In conclusion, AQP3 and AQP9 may play contrary roles in the pathophysiology of sepsis, and these results suggest that AQP9 may be a novel drug target in sepsis and, concurrently, a valuable biomarker of the disease.


Assuntos
Aquaporinas , Sepse , Humanos , Aquaporina 3/genética , Aquaporina 3/metabolismo , Aquaporinas/genética , Aquaporinas/metabolismo , Sepse/genética
7.
Int J Mol Sci ; 25(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38338680

RESUMO

Sepsis is a common life-threatening disease caused by dysregulated immune response and metabolic acidosis which lead to organ failure. An abnormal expression of aquaporins plays an important role in organ failure. Additionally, genetic variants in aquaporins impact on the outcome in sepsis. Thus, we investigated the polymorphism (rs17553719) and expression of aquaporin-3 (AQP3) and correlated these measurements with the survival of sepsis patients. Accordingly, we collected blood samples on several days (plus clinical data) from 265 sepsis patients who stayed in different ICUs in Germany. Serum plasma, DNA, and RNA were then separated to detect the promotor genotypes of AQP3 mRNA expression of AQP3 and several cytokines. The results showed that the homozygote CC genotype exhibited a significant decrease in 30-day survival (38.9%) compared to the CT (66.15%) and TT genotypes (76.3%) (p = 0.003). Moreover, AQP3 mRNA expression was significantly higher and nearly doubled in the CC compared to the CT (p = 0.0044) and TT genotypes (p = 0.018) on the day of study inclusion. This was accompanied by an increased IL-33 concentration in the CC genotype (day 0: p = 0.0026 and day 3: p = 0.008). In summary, the C allele of the AQP3 polymorphism (rs17553719) shows an association with increased AQP3 expression and IL-33 concentration accompanied by decreased survival in patients with sepsis.


Assuntos
Aquaporinas , Sepse , Humanos , Aquaporina 3/genética , Aquaporinas/genética , Aquaporinas/metabolismo , Genótipo , Interleucina-33/genética , Interleucina-33/metabolismo , RNA Mensageiro/metabolismo , Sepse/genética , Sepse/metabolismo
8.
Artigo em Alemão | MEDLINE | ID: mdl-38354729

RESUMO

Immunometabolism is a fascinating field of research that investigates the interactions between metabolic processes and the immune response. This intricate connection plays a pivotal role in regulating inflammatory reactions and consequently exerts a significant impact on the course of sepsis. The proinflammatory response during an immune reaction is closely tied to a high energy demand in immune cells. As a result, proinflammatory immune cells rapidly require substantial amounts of energy in the form of ATP, necessitating a fundamental and swift shift in their metabolism, i.e., their means of generating energy. This entails a marked increase in glycolysis within the proinflammatory response, thereby promptly meeting the energy requirements and providing essential metabolic building blocks for the biosynthesis of macromolecules. Alongside glycolysis, there is heightened activity in the pentose phosphate pathway (PPP). The PPP significantly contributes to NADPH production within the cell, thus maintaining redox equilibrium. Elevated PPP activity consequently leads to an increased NADPH level, resulting in enhanced production of reactive oxygen species (ROS) and nitric oxide (NO). While these molecules are crucial for pathogen elimination, an excess can also induce tissue damage. Simultaneously, there are dual interruptions in the citric acid cycle. In the cellular resting state, the citric acid cycle acts as a sort of "universal processor", where metabolic byproducts of glycolysis, fatty acid breakdown, and amino acid degradation are initially transformed into NADH and FADH2, subsequently yielding ATP. While the citric acid cycle and its connected oxidative phosphorylation predominantly generate energy at rest, it becomes downregulated in the proinflammatory phase of sepsis. The two interruptions lead to an accumulation of citrate and succinate within cells, reflecting mitochondrial dysfunction. Additionally, the significantly heightened glycolysis through fermentation yields lactate, a pivotal metabolite for sepsis diagnosis and prognosis. Conversely, cells in an anti-inflammatory state revert to a metabolic profile akin to the resting state: Glycolysis is attenuated, PPP is suppressed, and the citric acid cycle is reactivated. Of particular interest is that not only does the immune reaction influence metabolic pathways, but this connection also operates in reverse. Thus, modulation of metabolic pathways also modulates the immunity of the corresponding cell and thereby the state of the immune system itself. This could potentially serve as an intriguing avenue in sepsis therapy.


Assuntos
Glicólise , Sepse , Humanos , NADP , Glicólise/fisiologia , Ciclo do Ácido Cítrico/fisiologia , Trifosfato de Adenosina
9.
BMC Anesthesiol ; 22(1): 12, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34986787

RESUMO

BACKGROUND: The COVID-19 pandemic has taken a toll on health care systems worldwide, which has led to increased mortality of different diseases like myocardial infarction. This is most likely due to three factors. First, an increased workload per nurse ratio, a factor associated with mortality. Second, patients presenting with COVID-19-like symptoms are isolated, which also decreases survival in cases of emergency. And third, patients hesitate to see a doctor or present themselves at a hospital. To assess if this is also true for sepsis patients, we asked whether non-COVID-19 sepsis patients had an increased 30-day mortality during the COVID-19 pandemic. METHODS: This is a post hoc analysis of the SepsisDataNet.NRW study, a multicentric, prospective study that includes septic patients fulfilling the SEPSIS-3 criteria. Within this study, we compared the 30-day mortality and disease severity of patients recruited pre-pandemic (recruited from March 2018 until February 2020) with non-COVID-19 septic patients recruited during the pandemic (recruited from March 2020 till December 2020). RESULTS: Comparing septic patients recruited before the pandemic to those recruited during the pandemic, we found an increased raw 30-day mortality in sepsis-patients recruited during the pandemic (33% vs. 52%, p = 0.004). We also found a significant difference in the severity of disease at recruitment (SOFA score pre-pandemic: 8 (5 - 11) vs. pandemic: 10 (8 - 13); p < 0.001). When adjusted for this, the 30-day mortality rates were not significantly different between the two groups (52% vs. 52% pre-pandemic and pandemic, p = 0.798). CONCLUSIONS: This led us to believe that the higher mortality of non-COVID19 sepsis patients during the pandemic might be attributed to a more severe septic disease at the time of recruitment. We note that patients may experience a delayed admission, as indicated by elevated SOFA scores. This could explain the higher mortality during the pandemic and we found no evidence for a diminished quality of care for critically ill sepsis patients in German intensive care units.


Assuntos
COVID-19/prevenção & controle , Pandemias , Sepse/mortalidade , Tempo para o Tratamento/estatística & dados numéricos , Idoso , Feminino , Alemanha/epidemiologia , Humanos , Masculino , Pessoa de Meia-Idade , Gravidade do Paciente , Estudos Prospectivos , SARS-CoV-2 , Análise de Sobrevida
10.
Int J Mol Sci ; 23(19)2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36233114

RESUMO

The quantity of aquaporin 5 protein in neutrophil granulocytes is associated with human sepsis-survival. The C-allele of the aquaporin (AQP5)-1364A/C polymorphism was shown to be associated with decreased AQP5 expression, which was shown to be relevant in this context leading towards improved outcomes in sepsis. To date, the underlying mechanism of the C-allele-leading to lower AQP5 expression-has been unknown. Knowing the detailed mechanism depicts a crucial step with a target to further interventions. Genotype-dependent regulation of AQP5 expression might be mediated by the epigenetic mechanism of promoter methylation and treatment with epigenetic-drugs could maybe provide benefit. Hence, we tested the hypothesis that AQP5 promoter methylation differs between genotypes in specific types of immune cells.: AQP5 promoter methylation was quantified in cells of septic patients and controls by methylation-specific polymerase chain reaction and quantified by a standard curve. In cell-line models, AQP5 expression was analyzed after demethylation to determine the impact of promoter methylation on AQP5 expression. C-allele of AQP5-1364 A/C promoter polymorphism is associated with a five-fold increased promoter methylation in neutrophils (p = 0.0055) and a four-fold increase in monocytes (p = 0.0005) and lymphocytes (p = 0.0184) in septic patients and healthy controls as well. In addition, a decreased AQP5 promoter methylation was accompanied by an increased AQP5 expression in HL-60 (p = 0.0102) and REH cells (p = 0.0102). The C-allele which is associated with lower gene expression in sepsis is accompanied by a higher methylation level of the AQP5 promoter. Hence, AQP5 promoter methylation could depict a key mechanism in genotype-dependent expression.


Assuntos
Aquaporina 5 , Metilação de DNA , Regiões Promotoras Genéticas , Sepse , Aquaporina 5/genética , Aquaporina 5/metabolismo , Células HL-60 , Humanos , Sepse/genética
11.
Int J Mol Sci ; 23(14)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35886907

RESUMO

The functionally important NF-κB1 promoter polymorphism (-94ins/delATTG) significantly shapes inflammation and impacts the outcome of sepsis. However, exploratory studies elucidating the molecular link of this genotype-dependent pattern are lacking. Accordingly, we analyzed lipopolysaccharide-stimulated peripheral blood mononuclear cells from both healthy volunteers (n = 20) and septic patients (n = 10). All individuals were genotyped for the -94ins/delATTG NF-κB1 promoter polymorphism. We found a diminished nuclear activity of the NF-κB subunit p50 in ID/DD genotypes after 48 h of lipopolysaccharide stimulation compared to II genotypes (p = 0.025). This was associated with higher TNF-α (p = 0.005) and interleukin 6 concentrations (p = 0.014) and an increased production of mitochondrial radical oxygen species in ID/DD genotypes (p = 0.001). Although ID/DD genotypes showed enhanced activation of mitochondrial biogenesis, they still had a significantly diminished cellular ATP content (p = 0.046) and lower mtDNA copy numbers (p = 0.010) compared to II genotypes. Strikingly, these findings were mirrored in peripheral blood mononuclear cells taken from septic patients. Our results emphasize the crucial aspect of considering NF-κB subunits in sepsis. We showed here that the deletion allele of the NF-κB1 (-94ins/delATTG) polymorphism was associated with the lower nuclear activity of subunit p50, which, in turn, was associated with aggravated inflammation and mitochondrial dysfunction.


Assuntos
NF-kappa B , Sepse , Alelos , Humanos , Inflamação/genética , Leucócitos Mononucleares , Lipopolissacarídeos , NF-kappa B/genética , Subunidade p50 de NF-kappa B/genética , Sepse/genética
12.
J Physiol ; 596(7): 1227-1241, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29369356

RESUMO

KEY POINTS: Na+ conducting hypertonicity-induced cation channels (HICCs) are key players in the volume restoration of osmotically shrunken cells and, under isotonic conditions, considered as mediators of proliferation - thereby opposing apoptosis. In an siRNA screen of ion channels and transporters in HepG2 cells, with the regulatory volume increase (RVI) as read-out, δENaC, TRPM2 and TRPM5 were identified as HICCs. Subsequently, all permutations of these channels were tested in RVI and patch-clamp recordings and, at first sight, HICCs were found to operate in an independent mode. However, there was synergy in the siRNA perturbations of HICC currents. Accordingly, proximity ligation assays showed that δENaC was located in proximity to TRPM2 and TRPM5 suggesting a physical interaction. Furthermore, δENaC, TRPM2 and TRPM5 were identified as mediators of HepG2 proliferation - their silencing enhanced apoptosis. Our study defines the architecture of HICCs in human hepatocytes as well as their molecular functions. ABSTRACT: Hypertonicity-induced cation channels (HICCs) are a substantial element in the regulatory volume increase (RVI) of osmotically shrunken cells. Under isotonic conditions, they are key effectors in the volume gain preceding proliferation; HICC repression, in turn, significantly increases apoptosis rates. Despite these fundamental roles of HICCs in cell physiology, very little is known concerning the actual molecular architecture of these channels. Here, an siRNA screening of putative ion channels and transporters was performed, in HepG2 cells, with the velocity of RVI as the read-out; in this first run, δENaC, TRPM2 and TRPM5 could be identified as HICCs. In the second run, all permutations of these channels were tested in RVI and patch-clamp recordings, with special emphasis on the non-additivity and additivity of siRNAs - which would indicate molecular interactions or independent ways of channel functioning. At first sight, the HICCs in HepG2 cells appeared to operate rather independently. However, a proximity ligation assay revealed that δENaC was located in proximity to both TRPM2 and TRPM5. Furthermore, a clear synergy of HICC current knock-downs (KDs) was observed. δENaC, TRPM2 and TRPM5 were defined as mediators of HepG2 cell proliferation and their silencing increased the rates of apoptosis. This study provides a molecular characterization of the HICCs in human hepatocytes and of their role in RVI, cell proliferation and apoptosis.


Assuntos
Apoptose , Proliferação de Células , Canais Epiteliais de Sódio/metabolismo , Hepatócitos/patologia , Hipertonia Muscular/fisiopatologia , Canais de Cátion TRPM/metabolismo , Canais Epiteliais de Sódio/química , Canais Epiteliais de Sódio/genética , Células Hep G2 , Hepatócitos/metabolismo , Humanos , RNA Interferente Pequeno , Canais de Cátion TRPM/antagonistas & inibidores , Canais de Cátion TRPM/genética
14.
Curr Top Microbiol Immunol ; 377: 111-26, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-23921974

RESUMO

The fate of the cell is governed by interactions among proteins, nucleic acids, and other biomolecules. It is vital to look at these interactions in a cellular environment if we want to increase our understanding of cellular processes. Herein we will describe how the in situ proximity ligation assay (in situ PLA) can be used to visualize protein interactions in fixed cells and tissues. In situ PLA is a novel technique that uses DNA, together with DNA modifying processes such as ligation, cleavage, and polymerization, as tools to create surrogate markers for protein interactions of interest. Different in situ PLA designs make it possible not only to detect protein-protein interactions but also post-translational modifications and interactions of proteins with nucleic acids. Flexibility in DNA probe design and the multitude of different DNA modifying enzymes provide the basis for modifications of the method to make it suitable to use in many applications. Furthermore, examples of how in situ PLA can be combined with other methods for a comprehensive view of the cellular activity status are discussed.


Assuntos
Mapeamento de Interação de Proteínas/métodos , Proteínas/metabolismo , Animais , DNA/genética , DNA/metabolismo , Humanos , Ligação Proteica , Processamento de Proteína Pós-Traducional , Proteínas/genética
15.
J Neurooncol ; 124(3): 373-83, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26224160

RESUMO

Platelet-derived growth factor receptor (PDGFR) signaling plays an important role in the biology of malignant gliomas. To investigate mechanisms modulating PDGFR signaling in gliomagenesis, we employed a Drosophila glioma model and genetic screen to identify genes interacting with Pvr, the fly homolog of PDGFRs. Glial expression of constitutively activated Pvr (λPvr) led to glial over migration and lethality at late larval stage. Among 3316 dsRNA strains crossed against the tester strain, 128 genes shifted lethality to pupal stage, including tetraspanin 2A (tsp2A). In a second step knockdown of all Drosophila tetraspanins was investigated. Of all tetraspanin dsRNA strains only knockdown of tsp2A partially rescued the Pvr-induced phenotype. Human CD9 (TSPAN29/MRP-1), a close homolog of tsp2A, was found to be expressed in glioma cell lines A172 and U343MG as well as in the majority of glioblastoma samples (16/22, 73 %). Furthermore, in situ proximity ligation assay revealed close association of CD9 with PDGFR α and ß. In U343MG cells, knockdown of CD9 blocked PDGF-BB stimulated migration. In conclusion, modulation of PDGFR signaling by CD9 is evolutionarily conserved from Drosophila glia to human glioma and plays a role in glia migration.


Assuntos
Movimento Celular/fisiologia , Glioma/patologia , Neuroglia/metabolismo , Receptores do Fator de Crescimento Derivado de Plaquetas/metabolismo , Tetraspanina 29/metabolismo , Análise de Variância , Animais , Animais Geneticamente Modificados , Evolução Biológica , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Relação Dose-Resposta a Droga , Drosophila , Proteínas de Drosophila/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Neuroglia/patologia , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/farmacologia , Receptores do Fator de Crescimento Derivado de Plaquetas/farmacologia , Transdução de Sinais
16.
Pathogens ; 13(1)2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38276162

RESUMO

Sepsis, a severe global healthcare challenge, is characterized by significant morbidity and mortality. The 2016 redefinition by the Third International Consensus Definitions Task Force emphasizes its complexity as a "life-threatening organ dysfunction caused by a dysregulated host response to infection". Bacterial pathogens, historically dominant, exhibit geographic variations, influencing healthcare strategies. The intricate dynamics of bacterial immunity involve recognizing pathogen-associated molecular patterns, triggering innate immune responses and inflammatory cascades. Dysregulation leads to immunothrombosis, disseminated intravascular coagulation, and mitochondrial dysfunction, contributing to the septic state. Viral sepsis, historically less prevalent, saw a paradigm shift during the COVID-19 pandemic, underscoring the need to understand the immunological response. Retinoic acid-inducible gene I-like receptors and Toll-like receptors play pivotal roles, and the cytokine storm in COVID-19 differs from bacterial sepsis. Latent viruses like human cytomegalovirus impact sepsis by reactivating during the immunosuppressive phases. Challenges in sepsis management include rapid pathogen identification, antibiotic resistance monitoring, and balancing therapy beyond antibiotics. This review highlights the evolving sepsis landscape, emphasizing the need for pathogen-specific therapeutic developments in a dynamic and heterogeneous clinical setting.

17.
Intensive Care Med Exp ; 12(1): 33, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589754

RESUMO

PURPOSE: Liver function of intensive care patients is routinely monitored by static blood pathology. For specific indications, liver specific cytochrome activity may be measured by the commercially available maximum liver function capacity (LiMAx) test via quantification of the cytochrome P450 1A2 (CYP1A2) dependent C-methacetin metabolism. Sedation with the volatile anesthetic isoflurane was suspected to abrogate the correlation of LiMAx test with global liver function. We hypothesized that isoflurane has a CYP1A2-activity and LiMAx test result decreasing effect. METHODS: In this monocentric, observational clinical study previously liver healthy intensive care patients, scheduled to be changed from propofol to isoflurane sedation, were enrolled. LiMAx testing was done before, during and after termination of isoflurane sedation. RESULTS: The mean LiMAx value decreased during isoflurane sedation. Septic patients (n = 11) exhibited lower LiMAx values compared to non-septic patients (n = 11) at all time points. LiMAx values decreased with isoflurane from 140 ± 82 to 30 ± 34 µg kg-1 h-1 in the septic group and from 253 ± 92 to 147 ± 131 µg kg-1 h-1 in the non-septic group while laboratory markers did not imply significant hepatic impairment. Lactate increased during isoflurane inhalation without clinical consequence. CONCLUSION: Sepsis and isoflurane have independently demonstrated an effect on reducing the hepatic CYP1A2-activity. A network model was constructed that could explain the mechanism through the influence of isoflurane on hypoxia inducible factor (HIF-1α) by upregulation of the hypoxia-inducible pathway and the downregulation of CYP1A2-activity via the ligand-inducible pathway. Thus, the increased anaerobic metabolism may result in lactate accumulation. The influence of isoflurane sedation on the validated correlation of global liver function with CYP1A2-activity measured by LiMAx testing needs to be investigated in more detail.

18.
Sci Transl Med ; 16(755): eadn9285, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38985853

RESUMO

Patients with sepsis experience metabolic and immunologic dysfunction that may be amplified by standard carbohydrate-based nutrition. A ketogenic diet (KD) may offer an immunologically advantageous alternative, although clinical evidence is limited. We conducted a single-center, open-label, randomized controlled trial to assess whether a KD could induce stable ketosis in critically ill patients with sepsis. Secondary outcomes included assessment of feasibility and safety of KD, as well as explorative analysis of clinical and immunological characteristics. Forty critically ill adults were randomized to either a ketogenic or standard high-carbohydrate diet. Stable ketosis was achieved in all KD patients, with significant increases in ß-hydroxybutyrate levels compared with controls [mean difference 1.4 milimoles per liter; 95% confidence interval (CI): 1.0 to 1.8; P < 0.001). No major adverse events or harmful metabolic side effects (acidosis, dysglycemia, or dyslipidemia) were observed. After day 4, none of the patients in the KD group required insulin treatment, whereas in the control group, insulin dependency ranged between 35% and 60% (P = 0.009). There were no differences in 30-day survival, but ventilation-free [incidence rate ratio (IRR) 1.7; 95% CI: 1.5 to 2.1; P < 0.001], vasopressor-free (IRR 1.7; 95% CI: 1.5 to 2.0; P < 0.001), dialysis-free (IRR 1.5; 95% CI: 1.3 to 1.8; P < 0.001), and intensive care unit-free days (IRR 1.7; 95% CI: 1.4 to 2.1; P < 0.001) were higher in the ketogenic group. Next-generation sequencing of CD4+/CD8+ T cells and protein analyses showed reduced immune dysregulation, with decreased gene expression of T-cell activation and signaling markers and lower pro-inflammatory cytokine secretion. This trial demonstrated the safe induction of a stable ketogenic state in sepsis, warranting larger trials to investigate potential benefits in sepsis-related organ dysfunction.


Assuntos
Estado Terminal , Dieta Cetogênica , Sepse , Humanos , Masculino , Sepse/dietoterapia , Sepse/sangue , Feminino , Pessoa de Meia-Idade , Ácido 3-Hidroxibutírico/sangue , Adulto , Idoso , Cetose , Resultado do Tratamento
19.
PLoS One ; 19(3): e0300739, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38547245

RESUMO

INTRODUCTION: An increasing amount of longitudinal health data is available on critically ill septic patients in the age of digital medicine, including daily sequential organ failure assessment (SOFA) score measurements. Thus, the assessment in sepsis focuses increasingly on the evaluation of the individual disease's trajectory. Machine learning (ML) algorithms may provide a promising approach here to improve the evaluation of daily SOFA score dynamics. We tested whether ML algorithms can outperform the conventional ΔSOFA score regarding the accuracy of 30-day mortality prediction. METHODS: We used the multicentric SepsisDataNet.NRW study cohort that prospectively enrolled 252 sepsis patients between 03/2018 and 09/2019 for training ML algorithms, i.e. support vector machine (SVM) with polynomial kernel and artificial neural network (aNN). We used the Amsterdam UMC database covering 1,790 sepsis patients for external and independent validation. RESULTS: Both SVM (AUC 0.84; 95% CI: 0.71-0.96) and aNN (AUC 0.82; 95% CI: 0.69-0.95) assessing the SOFA scores of the first seven days led to a more accurate prognosis of 30-day mortality compared to the ΔSOFA score between day 1 and 7 (AUC 0.73; 95% CI: 0.65-0.80; p = 0.02 and p = 0.05, respectively). These differences were even more prominent the shorter the time interval considered. Using the SOFA scores of day 1 to 3 SVM (AUC 0.82; 95% CI: 0.68 0.95) and aNN (AUC 0.80; 95% CI: 0.660.93) led to a more accurate prognosis of 30-day mortality compared to the ΔSOFA score (AUC 0.66; 95% CI: 0.58-0.74; p < 0.01 and p < 0.01, respectively). Strikingly, all these findings could be confirmed in the independent external validation cohort. CONCLUSIONS: The ML-based algorithms using daily SOFA scores markedly improved the accuracy of mortality compared to the conventional ΔSOFA score. Therefore, this approach could provide a promising and automated approach to assess the individual disease trajectory in sepsis. These findings reflect the potential of incorporating ML algorithms as robust and generalizable support tools on intensive care units.


Assuntos
Escores de Disfunção Orgânica , Sepse , Humanos , Estudos Retrospectivos , Unidades de Terapia Intensiva , Aprendizado de Máquina , Sepse/diagnóstico , Prognóstico , Curva ROC
20.
Front Immunol ; 15: 1386586, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38779663

RESUMO

Background: Sepsis, a life-threatening condition caused by the dysregulated host response to infection, is a major global health concern. Understanding the impact of viral or bacterial pathogens in sepsis is crucial for improving patient outcomes. This study aimed to investigate the human cytomegalovirus (HCMV) seropositivity as a risk factor for development of sepsis in patients with COVID-19. Methods: A multicenter observational study enrolled 95 intensive care patients with COVID-19-induced sepsis and 80 post-surgery individuals as controls. HCMV serostatus was determined using an ELISA test. Comprehensive clinical data, including demographics, comorbidities, and 30-day mortality, were collected. Statistical analyses evaluated the association between HCMV seropositivity and COVID-19 induced sepsis. Results: The prevalence of HCMV seropositivity did not significantly differ between COVID-19-induced sepsis patients (78%) and controls (71%, p = 0.382) in the entire cohort. However, among patients aged ≤60 years, HCMV seropositivity was significantly higher in COVID-19 sepsis patients compared to controls (86% vs 61%, respectively; p = 0.030). Nevertheless, HCMV serostatus did not affect 30-day survival. Discussion: These findings confirm the association between HCMV seropositivity and COVID-19 sepsis in non-geriatric patients. However, the lack of an independent effect on 30-day survival can be explained by the cross-reactivity of HCMV specific CD8+ T-cells towards SARS-CoV-2 peptides, which might confer some protection to HCMV seropositive patients. The inclusion of a post-surgery control group strengthens the generalizability of the findings. Further research is needed to elucidate the underlying mechanisms of this association, explore different patient populations, and identify interventions for optimizing patient management. Conclusion: This study validates the association between HCMV seropositivity and severe COVID-19-induced sepsis in non-geriatric patients, contributing to the growing body of evidence on viral pathogens in sepsis. Although HCMV serostatus did not independently influence 30-day survival, future investigations should focus on unraveling the intricate interplay between HCMV, immune responses, and COVID-19. These insights will aid in risk stratification and the development of targeted interventions for viral sepsis.


Assuntos
COVID-19 , Infecções por Citomegalovirus , Citomegalovirus , SARS-CoV-2 , Sepse , Humanos , COVID-19/imunologia , COVID-19/mortalidade , COVID-19/epidemiologia , COVID-19/complicações , Masculino , Feminino , Pessoa de Meia-Idade , Sepse/imunologia , Sepse/epidemiologia , Sepse/mortalidade , Citomegalovirus/imunologia , Idoso , Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/epidemiologia , Infecções por Citomegalovirus/mortalidade , Infecções por Citomegalovirus/complicações , SARS-CoV-2/imunologia , Fatores de Risco , Adulto , Anticorpos Antivirais/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA