Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Inherit Metab Dis ; 43(2): 297-308, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31339582

RESUMO

Transport And Golgi Organization protein 2 (TANGO2) deficiency has recently been identified as a rare metabolic disorder with a distinct clinical and biochemical phenotype of recurrent metabolic crises, hypoglycemia, lactic acidosis, rhabdomyolysis, arrhythmias, and encephalopathy with cognitive decline. We report nine subjects from seven independent families, and we studied muscle histology, respiratory chain enzyme activities in skeletal muscle and proteomic signature of fibroblasts. All nine subjects carried autosomal recessive TANGO2 mutations. Two carried the reported deletion of exons 3 to 9, one homozygous, one heterozygous with a 22q11.21 microdeletion inherited in trans. The other subjects carried three novel homozygous (c.262C>T/p.Arg88*; c.220A>C/p.Thr74Pro; c.380+1G>A), and two further novel heterozygous (c.6_9del/p.Phe6del); c.11-13delTCT/p.Phe5del mutations. Immunoblot analysis detected a significant decrease of TANGO2 protein. Muscle histology showed mild variation of fiber diameter, no ragged-red/cytochrome c oxidase-negative fibers and a defect of multiple respiratory chain enzymes and coenzyme Q10 (CoQ10 ) in two cases, suggesting a possible secondary defect of oxidative phosphorylation. Proteomic analysis in fibroblasts revealed significant changes in components of the mitochondrial fatty acid oxidation, plasma membrane, endoplasmic reticulum-Golgi network and secretory pathways. Clinical presentation of TANGO2 mutations is homogeneous and clinically recognizable. The hemizygous mutations in two patients suggest that some mutations leading to allele loss are difficult to detect. A combined defect of the respiratory chain enzymes and CoQ10 with altered levels of several membrane proteins provides molecular insights into the underlying pathophysiology and may guide rational new therapeutic interventions.


Assuntos
Encefalopatias Metabólicas/genética , Doenças Mitocondriais/genética , Debilidade Muscular/genética , Mutação , Proteômica/métodos , Rabdomiólise/genética , Encefalopatias Metabólicas/diagnóstico , Ácidos Graxos/metabolismo , Feminino , Complexo de Golgi/genética , Complexo de Golgi/metabolismo , Homozigoto , Humanos , Lactente , Masculino , Doenças Mitocondriais/diagnóstico , Fosforilação Oxidativa , Fenótipo , Rabdomiólise/diagnóstico , Sequenciamento Completo do Genoma
2.
Sci Rep ; 8(1): 5337, 2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29593240

RESUMO

Solid solutions of Zr(Mo,W)2O7(OH,Cl)2∙2H2O with a preset ratio of components were prepared by a hydrothermal method. The chemical composition of the solutions was determined by energy dispersive X-ray spectroscopy (EDX). For all the samples of ZrMoxW2-xO7(OH,Cl)2∙2H2O (x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, and 2.0), TGA and in situ powder X-ray diffraction (PXRD) studies (300-1100 K) were conducted. For each case, the boundaries of the transformations were determined: Zr(Mo,W)2O7(OH,Cl)2∙2H2O → orthorhombic-ZrMoxW2-xO8 (425-525 K), orthorhombic-ZrMoxW2-xO8 → cubic-ZrMoxW2-xO8 (700-850 K), cubic-ZrMoxW2-xO8 → trigonal-ZrMoxW2-xO8 (800-1050 K for x > 1) and cubic-ZrMoxW2-xO8 → oxides (1000-1075 K for x ≤ 1). The cell parameters of the disordered cubic-ZrMoxW2-xO8 (space group Pa-3) were measured within 300-900 K, and the thermal expansion coefficients were calculated: -3.5∙10-6 - -4.5∙10-6 K-1. For the ordered ZrMo1.8W0.2O8 (space group P213), a negative thermal expansion (NTE) coefficient -9.6∙10-6 K-1 (300-400 K) was calculated. Orthorhombic-ZrW2O8 is formed upon the decomposition of ZrW2O7(OH,Cl)2∙2H2O within 500-800 K.

3.
Indian J Pediatr ; 83(10): 1157-63, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26759002

RESUMO

Disorders of the mitochondrial respiratory chain are an exceedingly diverse group. The clinical features can affect any tissue or organ and occur at any age, with any mode of inheritance. The diagnosis of mitochondrial disorders requires knowledge of the clinical phenotypes and access to a wide range of laboratory techniques. A few syndromes are associated with a specific genetic defect and in these cases it is appropriate to proceed directly to an appropriate test of blood or urine. In most cases, however, the best strategy starts with biochemical and histochemical studies on a muscle biopsy. Appropriate molecular genetic studies can then be chosen, based on these results and the clinical picture. Unfortunately, there is currently limited availability of respiratory chain studies in India. Exome sequencing is undertaken increasingly often; without preceding mitochondrial studies, this can lead to misleading results.


Assuntos
Doenças Mitocondriais/diagnóstico , Humanos , Índia , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA