Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 25(14): 15614-15623, 2017 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-28789076

RESUMO

We demonstrate a new approach to calibrating the spectral-spatial response of a wide-field spectrograph using a fibre etalon comb. Conventional wide-field instruments employed on front-line telescopes are mapped with a grid of diffraction-limited holes cut into a focal plane mask. The aberrated grid pattern in the image plane typically reveals n-symmetric (e.g. pincushion) distortion patterns over the field arising from the optical train. This approach is impractical in the presence of a dispersing element because the diffraction-limited spots in the focal plane are imaged as an array of overlapping spectra. Instead, we propose a compact solution that builds on recent developments in fibre-based, Fabry-Perot etalons. We introduce a novel approach to near-field illumination that exploits a 20cm aperture commercial telescope and the propagation of skew rays in a multimode fibre. The mapping of the optical transfer function across the full field is represented accurately (<0.5% rms residual) by an orthonormal set of Chebyshev moments. Thus we are able to reconstruct the full 4K × 4K CCD image of the dispersed output from the optical fibres using this mapping, as we demonstrate. Our method targets one of the largest sources of systematic error in multi-object spectroscopy, i.e. spectral distortion due to instrumental aberrations, and provides a comprehensive solution to their calibration and removal.

2.
Science ; 345(6198): 791-5, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25124434

RESUMO

The diffuse interstellar bands (DIBs) are absorption lines observed in visual and near-infrared spectra of stars. Understanding their origin in the interstellar medium is one of the oldest problems in astronomical spectroscopy, as DIBs have been known since 1922. In a completely new approach to understanding DIBs, we combined information from nearly 500,000 stellar spectra obtained by the massive spectroscopic survey RAVE (Radial Velocity Experiment) to produce the first pseudo-three-dimensional map of the strength of the DIB at 8620 angstroms covering the nearest 3 kiloparsecs from the Sun, and show that it follows our independently constructed spatial distribution of extinction by interstellar dust along the Galactic plane. Despite having a similar distribution in the Galactic plane, the DIB 8620 carrier has a significantly larger vertical scale height than the dust. Even if one DIB may not represent the general DIB population, our observations outline the future direction of DIB research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA