Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Cell ; 186(18): 3745-3746, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37657414
2.
Genes Dev ; 37(7-8): 277-290, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-37055084

RESUMO

The evolutionarily conserved cohesin complex mediates sister chromatid cohesion and facilitates mitotic chromosome condensation, DNA repair, and transcription regulation. These biological functions require cohesin's two ATPases, formed by the Smc1p and Smc3p subunits. Cohesin's ATPase activity is stimulated by the Scc2p auxiliary factor. This stimulation is inhibited by Eco1p acetylation of Smc3p at an interface with Scc2p. It was unclear how cohesin's ATPase activity is stimulated by Scc2p or how acetylation inhibits Scc2p, given that the acetylation site is distal to cohesin's ATPase active sites. Here, we identify mutations in budding yeast that suppressed the in vivo defects caused by Smc3p acetyl-mimic and acetyl-defective mutations. We provide compelling evidence that Scc2p activation of cohesin ATPase depends on an interface between Scc2p and a region of Smc1p proximal to cohesin's Smc3p ATPase active site. Furthermore, substitutions at this interface increase or decrease ATPase activity to overcome ATPase modulation by acetyl-mimic and acetyl-null mutations. Using these observations and an existing cryo-EM structure, we propose a model for regulating cohesin ATPase activity. We suggest that Scc2p binding to Smc1p causes the adjacent Smc1p residues and ATP to shift, stimulating Smc3p's ATPase. This stimulatory shift is inhibited through acetylation of the distal Scc2p-Smc3p interface.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/metabolismo , Acetilação , Cromátides/metabolismo , Proteínas de Ciclo Celular/metabolismo , Coesinas
3.
Genes Dev ; 34(11-12): 819-831, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32354834

RESUMO

Condensin mediates chromosome condensation, which is essential for proper chromosome segregation during mitosis. Prior to anaphase of budding yeast, the ribosomal DNA (RDN) condenses to a thin loop that is distinct from the rest of the chromosomes. We provide evidence that the establishment and maintenance of this RDN condensation requires the regulation of condensin by Cdc5p (polo) kinase. We show that Cdc5p is recruited to the site of condensin binding in the RDN by cohesin, a complex related to condensin. Cdc5p and cohesin prevent condensin from misfolding the RDN into an irreversibly decondensed state. From these and other observations, we propose that the spatial regulation of Cdc5p by cohesin modulates condensin activity to ensure proper RDN folding into a thin loop. This mechanism may be evolutionarily conserved, promoting the thinly condensed constrictions that occur at centromeres and RDN of mitotic chromosomes in plants and animals.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos Fúngicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/genética , Cromossomos Fúngicos/genética , Proteínas de Ligação a DNA/genética , Complexos Multiproteicos/genética , Ligação Proteica , Dobramento de Proteína , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Coesinas
4.
Mol Cell ; 71(4): 487-497.e3, 2018 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-30078723

RESUMO

DNA-RNA hybrids associated with R-loops promote DNA damage and genomic instability. The capacity of hybrids at different genomic sites to cause DNA damage was not known, and the mechanisms leading from hybrid to damage were poorly understood. Here, we adopt a new strategy to map and characterize the sites of hybrid-induced damage genome-wide in budding yeast. We show that hybrid removal is essential for life because persistent hybrids cause irreparable DNA damage and cell death. We identify that a subset of hybrids is prone to cause damage, and the chromosomal context of hybrids dramatically impacts their ability to induce damage. Furthermore, persistent hybrids affect the repair pathway, generating large regions of single-stranded DNA (ssDNA) by two distinct mechanisms, likely resection and re-replication. These damaged regions may act as potential precursors to gross chromosomal rearrangements like deletions and duplications that are associated with R-loops and cancers.


Assuntos
DNA de Cadeia Simples/genética , Regulação Fúngica da Expressão Gênica , Genoma Fúngico , Instabilidade Genômica , RNA/genética , Saccharomyces cerevisiae/genética , Clivagem do DNA , Dano ao DNA , DNA Helicases/genética , DNA Helicases/metabolismo , Replicação do DNA , DNA de Cadeia Simples/química , DNA de Cadeia Simples/metabolismo , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Hidroxiureia/farmacologia , Ácidos Indolacéticos/farmacologia , Conformação de Ácido Nucleico , Hibridização de Ácido Nucleico , RNA/química , RNA/metabolismo , RNA Helicases/genética , RNA Helicases/metabolismo , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Genes Dev ; 30(11): 1327-38, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27298336

RESUMO

R loops form when transcripts hybridize to homologous DNA on chromosomes, yielding a DNA:RNA hybrid and a displaced DNA single strand. R loops impact the genome of many organisms, regulating chromosome stability, gene expression, and DNA repair. Understanding the parameters dictating R-loop formation in vivo has been hampered by the limited quantitative and spatial resolution of current genomic strategies for mapping R loops. We report a novel whole-genome method, S1-DRIP-seq (S1 nuclease DNA:RNA immunoprecipitation with deep sequencing), for mapping hybrid-prone regions in budding yeast Saccharomyces cerevisiae Using this methodology, we identified ∼800 hybrid-prone regions covering 8% of the genome. Given the pervasive transcription of the yeast genome, this result suggests that R-loop formation is dictated by characteristics of the DNA, RNA, and/or chromatin. We successfully identified two features highly predictive of hybrid formation: high transcription and long homopolymeric dA:dT tracts. These accounted for >60% of the hybrid regions found in the genome. We demonstrated that these two factors play a causal role in hybrid formation by genetic manipulation. Thus, the hybrid map generated by S1-DRIP-seq led to the identification of the first global genomic features causal for R-loop formation in yeast.


Assuntos
Expressão Gênica , Genoma Fúngico/genética , Poli A/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Mapeamento Cromossômico , DNA Fúngico/metabolismo , Genômica , Histonas/metabolismo , Poli A/química , Poli A/metabolismo , Conformação Proteica , RNA Fúngico/metabolismo , Endonucleases Específicas para DNA e RNA de Cadeia Simples/metabolismo
6.
Mol Cell ; 50(5): 611-2, 2013 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-23746348

RESUMO

Work by Sun et al. (2013) in Arabidopsis reveals an additional function for R-loops in suppressing the expression of a long noncoding RNA and sheds light on the single-stranded DNA binding protein AtNDX that promotes persistence of the R-loop.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Homeodomínio/metabolismo , Proteínas de Domínio MADS/genética , RNA Antissenso/genética , RNA Longo não Codificante/genética , RNA de Plantas/genética , Transcrição Gênica
7.
Proc Natl Acad Sci U S A ; 115(39): 9732-9737, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30201721

RESUMO

Cohesin is a four-subunit ATPase in the family of structural maintenance of chromosomes (SMC). Cohesin promotes sister chromatid cohesion, chromosome condensation, DNA repair, and transcription regulation. Cohesin performs these functions as a DNA tether and potentially a DNA-based motor. At least one of its DNA binding activities involves entrapment of DNA within a lumen formed by its subunits. This activity can be reconstituted in vitro by incubating cohesin with DNA, ATP, and cohesin loader. Previously we showed that a mutant form of cohesin (DE-cohesin) possesses the ability to bind and tether DNA in vivo. Using in vitro reconstitution assays, we show that DE-cohesin can form stable complexes with DNA without ATP hydrolysis. We show that wild-type cohesin with ADP aluminum fluoride (cohesinADP/AlFx) can also form stable cohesin-DNA complexes. These results suggest that an intermediate nucleotide state of cohesin, likely cohesinADP-Pi, is capable of initially dissociating one interface between cohesin subunits to allow DNA entry into a cohesin lumen and subsequently interacting with the bound DNA to stabilize DNA entrapment. We also show that cohesinADP/AlFx binding to DNA is enhanced by cohesin loader, suggesting a function for loader other than stimulating the ATPase. Finally, we show that loader remains stably bound to cohesinADP/AlFx after DNA entrapment, potentially revealing a function for loader in tethering the second DNA substrate. These results provide important clues on how SMC complexes like cohesin can function as both DNA tethers and motors.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , DNA/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Reparo do DNA , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Translocação Genética , Coesinas
8.
Mol Cell ; 44(6): 978-88, 2011 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-22195970

RESUMO

Genome instability, a hallmark of cancer progression, is thought to arise through DNA double strand breaks (DSBs). Studies in yeast and mammalian cells have shown that DSBs and instability can occur through RNA:DNA hybrids generated by defects in RNA elongation and splicing. We report that in yeast hybrids naturally form at many loci in wild-type cells, likely due to transcriptional errors, but are removed by two evolutionarily conserved RNase H enzymes. Mutants defective in transcriptional repression, RNA export and RNA degradation show increased hybrid formation and associated genome instability. One mutant, sin3Δ, changes the genome profile of hybrids, enhancing formation at ribosomal DNA. Hybrids likely induce damage in G1, S and G2/M as assayed by Rad52 foci. In summary, RNA:DNA hybrids are a potent source for changing genome structure. By preventing their formation and accumulation, multiple RNA biogenesis factors and RNase H act as guardians of the genome.


Assuntos
DNA/genética , Instabilidade Genômica/genética , RNA/biossíntese , RNA/genética , Ribonuclease H/metabolismo , Ciclo Celular , Cromossomos Artificiais de Levedura/genética , Cromossomos Artificiais de Levedura/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Mutação , Hibridização de Ácido Nucleico , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Ribonuclease H/genética , Ribonucleases/genética , Ribonucleases/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcrição Gênica
9.
Proc Natl Acad Sci U S A ; 113(43): 12220-12225, 2016 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-27791008

RESUMO

DNA:RNA hybrids can lead to DNA damage and genome instability. This damage can be prevented by degradation of the RNA in the hybrid by two evolutionarily conserved enzymes, RNase H1 and H2. Indeed, RNase H-deficient cells have increased chromosomal rearrangements. However, the quantitative and spatial contributions of the individual enzymes to hybrid removal have been unclear. Additionally, RNase H2 can remove single ribonucleotides misincorporated into DNA during replication. The relative contribution of DNA:RNA hybrids and misincorporated ribonucleotides to chromosome instability also was uncertain. To address these issues, we studied the frequency and location of loss-of-heterozygosity (LOH) events on chromosome III in Saccharomyces cerevisiae strains that were defective for RNase H1, H2, or both. We showed that RNase H2 plays the major role in preventing chromosome III instability through its hybrid-removal activity. Furthermore, RNase H2 acts pervasively at many hybrids along the chromosome. In contrast, RNase H1 acts to prevent LOH within a small region of chromosome III where the instability is dependent upon two hybrid-prone sequences. This restriction of RNase H1 activity to a subset of hybrids is not the result of its constrained localization, because we found it at hybrids genome-wide. This result suggests that the genome-protection activity of RNase H1 is regulated at a step after hybrid recognition. The global function of RNase H2 and the region-specific function of RNase H1 provide insight into why these enzymes with overlapping hybrid-removal activities have been conserved throughout evolution.


Assuntos
Instabilidade Cromossômica/genética , Perda de Heterozigosidade/genética , Ribonuclease H/genética , Cromossomos Fúngicos/genética , Dano ao DNA/genética , Replicação do DNA/genética , DNA Fúngico/genética , RNA Fúngico/genética , Ribonucleotídeos/genética , Saccharomyces cerevisiae/genética
10.
Proc Natl Acad Sci U S A ; 112(19): 6122-7, 2015 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-25918381

RESUMO

Diverse organisms capable of surviving desiccation, termed anhydrobiotes, include species from bacteria, yeast, plants, and invertebrates. However, most organisms are sensitive to desiccation, likely due to an assortment of different stresses such as protein misfolding and aggregation, hyperosmotic stress, membrane fracturing, and changes in cell volume and shape leading to an overcrowded cytoplasm and metabolic arrest. The exact stress(es) that cause lethality in desiccation-sensitive organisms and how the lethal stresses are mitigated in desiccation-tolerant organisms remain poorly understood. The presence of trehalose in anhydrobiotes has been strongly correlated with desiccation tolerance. In the yeast Saccharomyces cerevisiae, trehalose is essential for survival after long-term desiccation. Here, we establish that the elevation of intracellular trehalose in dividing yeast by its import from the media converts yeast from extreme desiccation sensitivity to a high level of desiccation tolerance. This trehalose-induced tolerance is independent of utilization of trehalose as an energy source, de novo synthesis of other stress effectors, or the metabolic effects of trehalose biosynthetic intermediates, indicating that a chemical property of trehalose is directly responsible for desiccation tolerance. Finally, we demonstrate that elevated intracellular maltose can also make dividing yeast tolerant to short-term desiccation, indicating that other disaccharides have stress effector activity. However, trehalose is much more effective than maltose at conferring tolerance to long-term desiccation. The effectiveness and sufficiency of trehalose as an antagonizer of desiccation-induced damage in yeast emphasizes its potential to confer desiccation tolerance to otherwise sensitive organisms.


Assuntos
Dessecação , Saccharomyces cerevisiae/fisiologia , Trealose/metabolismo , Citoplasma/metabolismo , Dissacarídeos/metabolismo , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/metabolismo , Maltose/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Regiões Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae/metabolismo , Estresse Fisiológico , Simportadores/metabolismo , Água/fisiologia
11.
PLoS Genet ; 11(3): e1005036, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25748820

RESUMO

The Structural Maintenance of Chromosome (SMC) complex, termed cohesin, is essential for sister chromatid cohesion. Cohesin is also important for chromosome condensation, DNA repair, and gene expression. Cohesin is comprised of Scc3, Mcd1, Smc1, and Smc3. Scc3 also binds Pds5 and Wpl1, cohesin-associated proteins that regulate cohesin function, and to the Scc2/4 cohesin loader. We mutagenized SCC3 to elucidate its role in cohesin function. A 5 amino acid insertion after Scc3 residue I358, or a missense mutation of residue D373 in the adjacent stromalin conservative domain (SCD) induce inviability and defects in both cohesion and cohesin binding to chromosomes. The I358 and D373 mutants abrogate Scc3 binding to Mcd1. These results define an Scc3 region extending from I358 through the SCD required for binding Mcd1, cohesin localization to chromosomes and cohesion. Scc3 binding to the cohesin loader, Pds5 and Wpl1 are unaffected in I358 mutant and the loader still binds the cohesin core trimer (Mcd1, Smc1 and Smc3). Thus, Scc3 plays a critical role in cohesin binding to chromosomes and cohesion at a step distinct from loader binding to the cohesin trimer. We show that residues Y371 and K372 within the SCD are critical for viability and chromosome condensation but dispensable for cohesion. However, scc3 Y371A and scc3 K372A bind normally to Mcd1. These alleles also provide evidence that Scc3 has distinct mechanisms of cohesin loading to different loci. The cohesion-competence, condensation-incompetence of Y371 and K372 mutants suggests that cohesin has at least one activity required specifically for condensation.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Segregação de Cromossomos/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/genética , Cromátides/genética , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos Fúngicos/genética , Reparo do DNA/genética , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Estrutura Terciária de Proteína , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Coesinas
12.
Mol Cell ; 34(3): 311-21, 2009 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-19450529

RESUMO

Chromosome segregation and the repair of DNA double-strand breaks (DSBs) require cohesin, the protein complex that mediates sister chromatid cohesion. Cohesion requires both a chromatin binding step and a subsequent tethering step called cohesion generation. Here we provide insight into how cohesion generation is restricted to S phase but can be activated in G2/M by a DSB in budding yeast. We show that Wpl1p inhibits cohesion in G2/M. A DSB counteracts Wpl1p and stimulates cohesion generation by first inducing the phosphorylation of the Mcd1p subunit of cohesin. This phosphorylation activates Eco1p-dependent acetylation of Mcd1p, which in turn antagonizes Wpl1p. Previous studies show that Eco1p antagonizes Wpl1p in S phase by acetylating the Smc3p subunit of cohesin. We show that Mcd1p and Smc3p acetylation antagonize Wpl1p only in their proper context. Thus, Eco1p antagonizes Wpl1p in distinct ways to modulate cohesion generation during the cell cycle and after DNA damage.


Assuntos
Acetiltransferases/metabolismo , Cromátides/metabolismo , Quebras de DNA de Cadeia Dupla , Proteínas Nucleares/metabolismo , Fase S/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Acetiltransferases/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Divisão Celular/fisiologia , Quinase 1 do Ponto de Checagem , Proteoglicanas de Sulfatos de Condroitina/química , Proteoglicanas de Sulfatos de Condroitina/genética , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Fase G2/fisiologia , Lisina/metabolismo , Modelos Moleculares , Proteínas Nucleares/genética , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Coesinas
13.
Mol Cell ; 31(1): 47-56, 2008 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-18614046

RESUMO

Cohesin, the protein complex that mediates sister chromatid cohesion, is required for faithful chromosome segregation and efficient repair of double-strand breaks (DSBs). Cohesion generation is normally restricted to S phase. However, in G2/M, a DSB activates cohesion generation near the DSB and genome-wide. Here, using budding yeast, we show that DSB-induced cohesion occurs when cohesin contains the kleisin subunit, Mcd1 (Scc1), but not when Mcd1 is replaced by its meiotic isoform, Rec8. We exploit this divergence to demonstrate that serine 83 of Mcd1 and the Chk1 kinase are critical determinants for DSB-induced cohesion. We propose that a DSB in G2/M activates Mec1 (ATR), which in turn stimulates Chk1-dependent phosphorylation of Mcd1 at serine 83. Serine 83 phosphorylation promotes chromatin-bound cohesin to become cohesive.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Dano ao DNA , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Subunidades Proteicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Troca de Cromátide Irmã , Sequência de Aminoácidos , Substituição de Aminoácidos , Proteínas de Ciclo Celular/química , Quinase 1 do Ponto de Checagem , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Replicação do DNA , Modelos Biológicos , Dados de Sequência Molecular , Proteínas Nucleares/química , Fosfoproteínas/química , Fosforilação , Isoformas de Proteínas/metabolismo , Proteínas Quinases/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/química , Serina/metabolismo , Relação Estrutura-Atividade , Coesinas
14.
PLoS Genet ; 8(3): e1002633, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22479212

RESUMO

DNA double-strand breaks impact genome stability by triggering many of the large-scale genome rearrangements associated with evolution and cancer. One of the first steps in repairing this damage is 5'→3' resection beginning at the break site. Recently, tools have become available to study the consequences of not extensively resecting double-strand breaks. Here we examine the role of Sgs1- and Exo1-dependent resection on genome stability using a non-selective assay that we previously developed using diploid yeast. We find that Saccharomyces cerevisiae lacking Sgs1 and Exo1 retains a very efficient repair process that is highly mutagenic to genome structure. Specifically, 51% of cells lacking Sgs1 and Exo1 repair a double-strand break using repetitive sequences 12-48 kb distal from the initial break site, thereby generating a genome rearrangement. These Sgs1- and Exo1-independent rearrangements depend partially upon a Rad51-mediated homologous recombination pathway. Furthermore, without resection a robust cell cycle arrest is not activated, allowing a cell with a single double-strand break to divide before repair, potentially yielding multiple progeny each with a different rearrangement. This profusion of rearranged genomes suggests that cells tolerate any dangers associated with extensive resection to inhibit mutagenic pathways such as break-distal recombination. The activation of break-distal recipient repeats and amplification of broken chromosomes when resection is limited raise the possibility that genome regions that are difficult to resect may be hotspots for rearrangements. These results may also explain why mutations in resection machinery are associated with cancer.


Assuntos
Quebras de DNA de Cadeia Dupla , Instabilidade Genômica , Recombinação Homóloga , Sequências Repetitivas de Ácido Nucleico/genética , Saccharomyces cerevisiae/genética , Alelos , Pontos de Checagem do Ciclo Celular , Quebra Cromossômica , Reparo do DNA , Diploide , Exodesoxirribonucleases/genética , Rearranjo Gênico , Genoma Fúngico , Recombinação Homóloga/genética , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , RecQ Helicases/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
15.
Proc Natl Acad Sci U S A ; 108(30): 12198-205, 2011 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-21670264

RESUMO

Cohesin is a member of the Smc family of protein complexes that mediates higher-order chromosome structure by tethering different regions of chromatin. We present a new in vitro system that assembles cohesin-DNA complexes with in vivo properties. The assembly of these physiological salt-resistant complexes requires the cohesin holo-complex, its ability to bind ATP, the cohesin loader Scc2p and a closed DNA topology. Both the number of cohesin molecules bound to the DNA substrate and their distribution on the DNA substrate are limited. Cohesin and Scc2p bind preferentially to cohesin associated regions (CARs), DNA sequences with enriched cohesin binding in vivo. A subsequence of CARC1 promotes cohesin binding to neighboring sequences within CARC1. The enhancer-like function of this sequence is validated by in vivo deletion analysis. By demonstrating the physiological relevance of these in vitro assembled cohesin-DNA complexes, we establish our in vitro system as a powerful tool to elucidate the mechanism of cohesin and other Smc complexes.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/metabolismo , DNA Fúngico/química , DNA Fúngico/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Sequência de Bases , Imunoprecipitação da Cromatina , Cromossomos Fúngicos/química , Cromossomos Fúngicos/metabolismo , DNA Fúngico/genética , Substâncias Macromoleculares/química , Substâncias Macromoleculares/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Coesinas
16.
Yeast ; 30(12): 501-9, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24185677

RESUMO

Here we describe the first high-throughput amenable method of quantifying Saccharomyces cerevisiae culture viability. Current high-throughput methods of assessing yeast cell viability, such as flow cytometry and SGA analysis, do not measure the percentage viability of a culture but instead measure cell vitality or colony fitness, respectively. We developed a method, called tadpoling, to quantify the percentage viability of a yeast culture, with the ability to detect as few as one viable cell amongst ~10(8) dead cells. The most important feature of this assay is the exploitation of yeast colony formation in liquid medium. Utilizing a microtiter dish, we are able to observe a range of viability of 100% to 0.0001%. Comparison of tadpoling to the traditional plating method to measure yeast culture viability reveals that, for the majority of Saccharomyces species analyzed there is no significant difference between the two methods. In comparison to flow cytometry using propidium iodide, the high-throughput method of measuring yeast culture viability, tadpoling is much more accurate at culture viabilities < 1%. Thus, we show that tadpoling provides an easy, inexpensive, space-saving method, amenable to high-throughput screens, for accurately measuring yeast cell viability.


Assuntos
Saccharomyces cerevisiae/crescimento & desenvolvimento , Contagem de Colônia Microbiana/métodos , Saccharomyces cerevisiae/citologia , Sensibilidade e Especificidade , Fatores de Tempo
17.
PLoS Genet ; 6(12): e1001228, 2010 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-21151956

RESUMO

Genome rearrangements often result from non-allelic homologous recombination (NAHR) between repetitive DNA elements dispersed throughout the genome. Here we systematically analyze NAHR between Ty retrotransposons using a genome-wide approach that exploits unique features of Saccharomyces cerevisiae purebred and Saccharomyces cerevisiae/Saccharomyces bayanus hybrid diploids. We find that DNA double-strand breaks (DSBs) induce NAHR-dependent rearrangements using Ty elements located 12 to 48 kilobases distal to the break site. This break-distal recombination (BDR) occurs frequently, even when allelic recombination can repair the break using the homolog. Robust BDR-dependent NAHR demonstrates that sequences very distal to DSBs can effectively compete with proximal sequences for repair of the break. In addition, our analysis of NAHR partner choice between Ty repeats shows that intrachromosomal Ty partners are preferred despite the abundance of potential interchromosomal Ty partners that share higher sequence identity. This competitive advantage of intrachromosomal Tys results from the relative efficiencies of different NAHR repair pathways. Finally, NAHR generates deleterious rearrangements more frequently when DSBs occur outside rather than within a Ty repeat. These findings yield insights into mechanisms of repeat-mediated genome rearrangements associated with evolution and cancer.


Assuntos
Reparo do DNA , Recombinação Genética , Sequências Repetitivas de Ácido Nucleico , Saccharomyces cerevisiae/genética , Quebras de DNA de Cadeia Dupla , Elementos de DNA Transponíveis , Genoma Fúngico , Saccharomyces/genética
18.
J Cell Biol ; 176(7): 911-8, 2007 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-17371833

RESUMO

Homologue segregation during the first meiotic division requires the proper spatial regulation of sister chromatid cohesion and its dissolution along chromosome arms, but its protection at centromeric regions. This protection requires the conserved MEI-S332/Sgo1 proteins that localize to centromeric regions and also recruit the PP2A phosphatase by binding its regulatory subunit, Rts1. Centromeric Rts1/PP2A then locally prevents cohesion dissolution possibly by dephosphorylating the protein complex cohesin. We show that Aurora B kinase in Saccharomyces cerevisiae (Ipl1) is also essential for the protection of meiotic centromeric cohesion. Coupled with a previous study in Drosophila melanogaster, this meiotic function of Aurora B kinase appears to be conserved among eukaryotes. Furthermore, we show that Sgo1 recruits Ipl1 to centromeric regions. In the absence of Ipl1, Rts1 can initially bind to centromeric regions but disappears from these regions after anaphase I onset. We suggest that centromeric Ipl1 ensures the continued centromeric presence of active Rts1/PP2A, which in turn locally protects cohesin and cohesion.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Centrômero/enzimologia , Proteínas Cromossômicas não Histona/metabolismo , Meiose/fisiologia , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Proteínas Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Aurora Quinases , Sítios de Ligação/fisiologia , Proteínas de Ciclo Celular/genética , Centrômero/genética , Proteínas Cromossômicas não Histona/genética , Segregação de Cromossomos/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Nucleares/genética , Fosfoproteínas Fosfatases/genética , Ligação Proteica/fisiologia , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases , Subunidades Proteicas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Coesinas
19.
Nucleic Acids Res ; 37(18): 6126-34, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19692582

RESUMO

Eco1p/Ctf7p is an essential acetyltransferase required for the establishment of sister chromatid cohesion. Eco1p acetylates Smc3p and Mcd1p (Scc1p or Rad21p) to establish cohesion during S phase and in response to DNA damage, respectively. In addition to its acetyltransferase domain, Eco1p harbors a conserved zinc finger domain. The zinc finger has been implicated in the establishment of sister chromatid cohesion in S phase, yet its function on the molecular level and its contribution to damage-induced cohesion are unknown. Here, we show that the zinc finger is essential for the establishment of cohesion in both S phase and in response to DNA damage. Our results suggest that the zinc finger augments the acetylation of Eco1p itself, Smc3p and likely Mcd1p. We propose that the zinc finger is a general enhancer of substrate recognition, thereby enhances the ability of Eco1p to acetylate its substrates above a threshold needed to generate cohesion during DNA replication and repair. Finally our studies of the zinc finger led to the discovery that Eco1 is a multimer, a property that could be exploited to coordinate acetylation of substrates either spatially or temporally for establishment of sister chromatid cohesion.


Assuntos
Acetiltransferases/química , Cromátides/enzimologia , Proteínas Nucleares/química , Proteínas de Saccharomyces cerevisiae/química , Dedos de Zinco , Acetiltransferases/genética , Acetiltransferases/metabolismo , Sequência de Aminoácidos , Dano ao DNA , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Multimerização Proteica , Fase S , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
20.
Elife ; 102021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33594972

RESUMO

Cohesin helps mediate sister chromatid cohesion, chromosome condensation, DNA repair, and transcription regulation. We exploited proximity-dependent labeling to define the in vivo interactions of cohesin domains with DNA or with other cohesin domains that lie within the same or in different cohesin complexes. Our results suggest that both cohesin's head and hinge domains are proximal to DNA, and cohesin structure is dynamic with differential folding of its coiled coil regions to generate butterfly confirmations. This method also reveals that cohesins form ordered clusters on and off DNA. The levels of cohesin clusters and their distribution on chromosomes are cell cycle-regulated. Cohesin clustering is likely necessary for cohesion maintenance because clustering and maintenance uniquely require the same subset of cohesin domains and the auxiliary cohesin factor Pds5p. These conclusions provide important new mechanistic and biological insights into the architecture of the cohesin complex, cohesin-cohesin interactions, and cohesin's tethering and loop-extruding activities.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Cromátides/fisiologia , Proteínas Cromossômicas não Histona/genética , Cromossomos Fúngicos , Reparo do DNA , Domínios Proteicos , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Coesinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA