Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
N Engl J Med ; 366(20): 1905-13, 2012 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-22591296

RESUMO

BACKGROUND: T-cell large granular lymphocytic leukemia is a rare lymphoproliferative disorder characterized by the expansion of clonal CD3+CD8+ cytotoxic T lymphocytes (CTLs) and often associated with autoimmune disorders and immune-mediated cytopenias. METHODS: We used next-generation exome sequencing to identify somatic mutations in CTLs from an index patient with large granular lymphocytic leukemia. Targeted resequencing was performed in a well-characterized cohort of 76 patients with this disorder, characterized by clonal T-cell-receptor rearrangements and increased numbers of large granular lymphocytes. RESULTS: Mutations in the signal transducer and activator of transcription 3 gene (STAT3) were found in 31 of 77 patients (40%) with large granular lymphocytic leukemia. Among these 31 patients, recurrent mutational hot spots included Y640F in 13 (17%), D661V in 7 (9%), D661Y in 7 (9%), and N647I in 3 (4%). All mutations were located in exon 21, encoding the Src homology 2 (SH2) domain, which mediates the dimerization and activation of STAT protein. The amino acid changes resulted in a more hydrophobic protein surface and were associated with phosphorylation of STAT3 and its localization in the nucleus. In vitro functional studies showed that the Y640F and D661V mutations increased the transcriptional activity of STAT3. In the affected patients, downstream target genes of the STAT3 pathway (IFNGR2, BCL2L1, and JAK2) were up-regulated. Patients with STAT3 mutations presented more often with neutropenia and rheumatoid arthritis than did patients without these mutations. CONCLUSIONS: The SH2 dimerization and activation domain of STAT3 is frequently mutated in patients with large granular lymphocytic leukemia; these findings suggest that aberrant STAT3 signaling underlies the pathogenesis of this disease. (Funded by the Academy of Finland and others.).


Assuntos
Leucemia Linfocítica Granular Grande/genética , Fator de Transcrição STAT3/genética , Idoso , Exoma , Expressão Gênica , Humanos , Masculino , Mutação , Receptores de Antígenos de Linfócitos T , Análise de Sequência de RNA , Transcrição Gênica , Regulação para Cima
2.
Blood ; 120(15): 3048-57, 2012 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-22859607

RESUMO

Chronic lymphoproliferative disorders of natural killer cells (CLPD-NKs) and T-cell large granular lymphocytic leukemias (T-LGLs) are clonal lymphoproliferations arising from either natural killer cells or cytotoxic T lymphocytes (CTLs). We have investigated for distribution and functional significance of mutations in 50 CLPD-NKs and 120 T-LGL patients by direct sequencing, allele-specific PCR, and microarray analysis. STAT3 gene mutations are present in both T and NK diseases: approximately one-third of patients with each type of disorder convey these mutations. Mutations were found in exons 21 and 20, encoding the Src homology 2 domain. Patients with mutations are characterized by symptomatic disease (75%), history of multiple treatments, and a specific pattern of STAT3 activation and gene deregulation, including increased expression of genes activated by STAT3. Many of these features are also found in patients with wild-type STAT3, indicating that other mechanisms of STAT3 activation can be operative in these chronic lymphoproliferative disorders. Treatment with STAT3 inhibitors, both in wild-type and mutant cases, resulted in accelerated apoptosis. STAT3 mutations are frequent in large granular lymphocytes suggesting a similar molecular dysregulation in malignant chronic expansions of NK and CTL origin. STAT3 mutations may distinguish truly malignant lymphoproliferations involving T and NK cells from reactive expansions.


Assuntos
Células Matadoras Naturais/patologia , Leucemia Linfocítica Granular Grande/genética , Leucemia Linfocítica Granular Grande/patologia , Transtornos Linfoproliferativos/genética , Transtornos Linfoproliferativos/patologia , Mutação/genética , Fator de Transcrição STAT3/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Western Blotting , Proliferação de Células , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Perfilação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Linfócitos T Citotóxicos/metabolismo , Linfócitos T Citotóxicos/patologia , Adulto Jovem
3.
Duodecim ; 128(6): 579-88, 2012.
Artigo em Fi | MEDLINE | ID: mdl-22506320

RESUMO

Chronic myeloid leukemia (CML) originates from a hematopoietic stem cell carrying the Philadelphia (Ph) chromosome and oncogenic BCR-ABL1 fusion gene. The first tyrosine-kinase inhibitor (TKI) imatinib was introduced to clinical practice 10 years ago, and it radically improved the outcome of CML patients. The rare patients that are imatinib resistant or intolerant can be treated with second generation TKIs such as dasatinib or nilotinib. As second generation TKIs appear to be more effective than imatinib and well tolerated, they may become standard first-line treatment for CML. The major future aim in CML is curative drug therapy.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Piperazinas/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Pirimidinas/uso terapêutico , Tiazóis/uso terapêutico , Benzamidas , Dasatinibe , Humanos , Mesilato de Imatinib
4.
Diabetes Care ; 33(2): 290-2, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19903754

RESUMO

OBJECTIVE: To evaluate the heterogeneity in the clinical expression in a family with glucokinase mature-onset diabetes of the young (GCK-MODY). RESEARCH DESIGN AND METHODS: Members (three generations) of the same family presented either with overt neonatal hyperglycemia, marked postprandial hyperglycemia, or glucosuria. Homeostasis model assessment of insulin resistance (HOMA(IR)) and insulinogenic and disposition indexes were calculated. Oral glucose tolerance test (OGTT) results in the GCK mutation carriers from this family were compared with those from other subjects with GCK mutations in the same codon (GCK(261)), with other missense and other types of GCK mutations in different codons from the European MODY Consortium database (GCK(m)). RESULTS: Mutation G261R was found in the GCK gene. During the OGTT, glucose (P = 0.02) and insulin (P = 0.009) response at 2 h as well as at the 2-h glucose increment (GCK(261) versus other missense GCK mutations, P = 0.003) were significantly higher in GCK(261) than in GCK(m) carriers. CONCLUSIONS: Differing from other GCK(m) carriers, the glucose and insulin response to oral glucose was significantly higher in GCK(261) carriers, indicating clinical heterogeneity in GCK-MODY.


Assuntos
Diabetes Mellitus Tipo 2/genética , Glucoquinase/genética , Mutação , Adulto , Glicemia/metabolismo , Códon/genética , Família , Feminino , Teste de Tolerância a Glucose , Humanos , Masculino , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA