RESUMO
Hepatocellular carcinoma (HCC) can have viral or non-viral causes1-5. Non-alcoholic steatohepatitis (NASH) is an important driver of HCC. Immunotherapy has been approved for treating HCC, but biomarker-based stratification of patients for optimal response to therapy is an unmet need6,7. Here we report the progressive accumulation of exhausted, unconventionally activated CD8+PD1+ T cells in NASH-affected livers. In preclinical models of NASH-induced HCC, therapeutic immunotherapy targeted at programmed death-1 (PD1) expanded activated CD8+PD1+ T cells within tumours but did not lead to tumour regression, which indicates that tumour immune surveillance was impaired. When given prophylactically, anti-PD1 treatment led to an increase in the incidence of NASH-HCC and in the number and size of tumour nodules, which correlated with increased hepatic CD8+PD1+CXCR6+, TOX+, and TNF+ T cells. The increase in HCC triggered by anti-PD1 treatment was prevented by depletion of CD8+ T cells or TNF neutralization, suggesting that CD8+ T cells help to induce NASH-HCC, rather than invigorating or executing immune surveillance. We found similar phenotypic and functional profiles in hepatic CD8+PD1+ T cells from humans with NAFLD or NASH. A meta-analysis of three randomized phase III clinical trials that tested inhibitors of PDL1 (programmed death-ligand 1) or PD1 in more than 1,600 patients with advanced HCC revealed that immune therapy did not improve survival in patients with non-viral HCC. In two additional cohorts, patients with NASH-driven HCC who received anti-PD1 or anti-PDL1 treatment showed reduced overall survival compared to patients with other aetiologies. Collectively, these data show that non-viral HCC, and particularly NASH-HCC, might be less responsive to immunotherapy, probably owing to NASH-related aberrant T cell activation causing tissue damage that leads to impaired immune surveillance. Our data provide a rationale for stratification of patients with HCC according to underlying aetiology in studies of immunotherapy as a primary or adjuvant treatment.
Assuntos
Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/terapia , Imunoterapia , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/terapia , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/imunologia , Animais , Antígeno B7-H1/imunologia , Antígeno B7-H1/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Carcinogênese/imunologia , Carcinoma Hepatocelular/complicações , Carcinoma Hepatocelular/imunologia , Progressão da Doença , Humanos , Fígado/imunologia , Fígado/patologia , Neoplasias Hepáticas/complicações , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Hepatopatia Gordurosa não Alcoólica/patologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Fator de Necrose Tumoral alfa/imunologiaRESUMO
The Avian sarcoma and leukosis viruses (ASLVs) are important chicken pathogens. Some of the virus subgroups, including ASLV-A and K, utilize the Tva receptor for cell entrance. Though Tva was identified three decades ago, its physiological function remains unknown. Previously, we have noted an intriguing resemblance and orthology between the chicken gene coding for Tva and the human gene coding for CD320, a receptor involved in cellular uptake of transcobalamin (TC) in complex with vitamin B12/cobalamin (Cbl).Here we show that both the transmembrane and the glycosylphosphatidylinositol (GPI)-anchored form of Tva in the chicken cell line DF-1 promotes the uptake of Cbl with help of expressed and purified chicken TC. The uptake of TC-Cbl complex was monitored using an isotope- or fluorophore-labeled Cbl. We show that (i) TC-Cbl is internalized in chicken cells; and (ii) the uptake is lower in the Tva-knockout cells and higher in Tva-overexpressing cells when compared with wild type chicken cells. The relation between physiological function of Tva and its role in infection was elaborated by showing that infection with ASLV subgroups (targeting Tva) impairs the uptake of TC-Cbl, while this is not the case for cells infected with ASLV-B (not recognized by Tva). In addition, exposure of the cells to a high concentration of TC-Cbl alleviates the infection with Tva-dependent ASLV.IMPORTANCE: We demonstrate that the ASLV receptor Tva participates in the physiological uptake of TC-Cbl, because the viral infection suppresses the uptake of Cbl and vice versa. Our results pave the road for future studies addressing the issues: (i) whether a virus infection can be inhibited by TC-Cbl complexes in vivo; and (ii) whether any human virus employs the human TC-Cbl receptor CD320. In broader terms, our study sheds light on the intricate interplay between physiological roles of cellular receptors and their involvement in virus infection.
RESUMO
The extent of virus transmission among individuals and species is generally determined by the presence of specific membrane-embedded virus receptors required for virus entry. Interaction of the viral envelope glycoprotein (Env) with a specific cellular receptor is the first and crucial step in determining host specificity. Using a well-established retroviral model-avian Rous sarcoma virus (RSV)-we analyzed changes in an RSV variant that had repeatedly been able to infect rodents. By envelope gene (env) sequencing, we identified eight mutations that do not match the already described mutations influencing the host range. Two of these mutations-one at the beginning (D32G) of the surface Env subunit (SU) and the other at the end of the fusion peptide region (L378S)-were found to be of critical importance, ensuring transmission to rodent, human, and chicken cells lacking the appropriate receptor. Furthermore, we carried out assays to examine the virus entry mechanism and concluded that these two mutations cause conformational changes in the Env variant and that these changes lead to an activated, or primed, state of Env (normally induced after Env interaction with the receptor). In summary, our results indicate that retroviral host range extension is caused by spontaneous Env activation, which circumvents the need for original cell receptor. This activation is, in turn, caused by mutations in various env regions.
Assuntos
Produtos do Gene env , Vetores Genéticos , Mutação de Sentido Incorreto , Vírus do Sarcoma de Rous , Transdução Genética , Substituição de Aminoácidos , Animais , Linhagem Celular Tumoral , Galinhas , Produtos do Gene env/genética , Produtos do Gene env/metabolismo , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Humanos , Ratos , Vírus do Sarcoma de Rous/genética , Vírus do Sarcoma de Rous/metabolismoRESUMO
Calpain2 is a conventional member of the non-lysosomal calpain protease family that has been shown to affect the dynamics of focal and cell-cell adhesions by proteolyzing the components of adhesion complexes. Here, we inactivated calpain2 using CRISPR/Cas9 in epithelial MDCK cells. We show that depletion of calpain2 has multiple effects on cell morphology and function. Calpain2-depleted cells develop epithelial shape, however, they cover a smaller area, and cell clusters are more compact. Inactivation of calpain2 enhanced restoration of transepithelial electrical resistance after calcium switch, decreased cell migration, and delayed cell scattering induced by HGF/SF. In addition, calpain2 depletion prevented morphological changes induced by ERK2 overexpression. Interestingly, proteolysis of several calpain2 targets, including E-cadherin, ß-catenin, talin, FAK, and paxillin, was not discernibly affected by calpain2 depletion. Taken together, these data suggest that calpain2 regulates the stability of cell-cell and cell-substratum adhesions indirectly without affecting the proteolysis of these adhesion complexes.
Assuntos
Calpaína , Adesão Celular , Células Epiteliais , Animais , Cães , beta Catenina/metabolismo , Caderinas/metabolismo , Cálcio/metabolismo , Calpaína/metabolismo , Movimento Celular , Sistemas CRISPR-Cas , Células Epiteliais/metabolismo , Células Epiteliais/citologia , Fator de Crescimento de Hepatócito/metabolismo , Células Madin Darby de Rim Canino , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , ProteóliseRESUMO
The role and molecular mechanisms of intermittent fasting (IF) in non-alcoholic steatohepatitis (NASH) and its transition to hepatocellular carcinoma (HCC) are unknown. Here, we identified that an IF 5:2 regimen prevents NASH development as well as ameliorates established NASH and fibrosis without affecting total calorie intake. Furthermore, the IF 5:2 regimen blunted NASH-HCC transition when applied therapeutically. The timing, length, and number of fasting cycles as well as the type of NASH diet were critical parameters determining the benefits of fasting. Combined proteome, transcriptome, and metabolome analyses identified that peroxisome-proliferator-activated receptor alpha (PPARα) and glucocorticoid-signaling-induced PCK1 act co-operatively as hepatic executors of the fasting response. In line with this, PPARα targets and PCK1 were reduced in human NASH. Notably, only fasting initiated during the active phase of mice robustly induced glucocorticoid signaling and free-fatty-acid-induced PPARα signaling. However, hepatocyte-specific glucocorticoid receptor deletion only partially abrogated the hepatic fasting response. In contrast, the combined knockdown of Ppara and Pck1 in vivo abolished the beneficial outcomes of fasting against inflammation and fibrosis. Moreover, overexpression of Pck1 alone or together with Ppara in vivo lowered hepatic triglycerides and steatosis. Our data support the notion that the IF 5:2 regimen is a promising intervention against NASH and subsequent liver cancer.
Assuntos
Carcinoma Hepatocelular , Jejum , Neoplasias Hepáticas , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica , PPAR alfa , Fosfoenolpiruvato Carboxiquinase (GTP) , PPAR alfa/metabolismo , Animais , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Humanos , Camundongos , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Masculino , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Transdução de Sinais , Jejum IntermitenteRESUMO
BACKGROUND: Although there is extensive evidence for the amoeboid invasiveness of cancer cells in vitro, much less is known about the role of amoeboid invasiveness in metastasis and the importance of Rho/ROCK/MLC signaling in this process. RESULTS: We analyzed the dependence of amoeboid invasiveness of rat and chicken sarcoma cells and the metastatic activity of chicken cells on individual elements of the Rho/ROCK/MLC pathway. In both animal models, inhibition of Rho, ROCK or MLC resulted in greatly decreased cell invasiveness in vitro, while inhibition of extracellular proteases using a broad spectrum inhibitor did not have a significant effect. The inhibition of both Rho activity and MLC phosphorylation by dominant negative mutants led to a decreased capability of chicken sarcoma cells to metastasize. Moreover, the overexpression of RhoA in non-metastatic chicken cells resulted in the rescue of both invasiveness and metastatic capability. Rho and ROCK, unlike MLC, appeared to be directly involved in the maintenance of the amoeboid phenotype, as their inhibition resulted in the amoeboid-mesenchymal transition in analyzed cell lines. CONCLUSION: Taken together, these results suggest that protease-independent invasion controlled by elements of the Rho/ROCK/MLC pathway can be frequently exploited by metastatic sarcoma cells.
Assuntos
Cadeias Leves de Miosina/metabolismo , Sarcoma/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Quinases Associadas a rho/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular , Galinhas , Invasividade Neoplásica , Ratos , Sarcoma/patologia , Transdução de SinaisRESUMO
Repetitive sequences are among the most unstable regions in the eukaryotic genome and defects in their maintenance correlate with premature aging and cancer development. Promyelocytic leukemia protein (PML) induces accumulation of proteins at distinct nuclear sites, thereby affecting a plethora of processes including DNA repair or maintenance of telomeres. Doxorubicin, the broadly used chemotherapeutic compound, induces formation of PML-nucleolar associations (PNAs). Nevertheless, molecular factors affecting formation of PNAs are still largely unknown. Here we show that PNAs can accumulate ribosomal DNA (rDNA) and, after restoration of RNA polymerase I activity, these structures transfer a fraction of rDNA outside the nucleolus. Mutagenesis of PML isoforms revealed that this process depends on the SUMO-interacting motif and adjacent serine-rich region, and is enhanced by exon8b present exclusively in PML IV isoform. Moreover, we demonstrate that PNAs formation is also regulated by p14ARF/p53 tumor suppressors and casein kinase 2. Our data elucidate how PML nucleolar compartment is assembled, bring the first evidence of PML interacting with rDNA, and show the PML-dependent translocation of rDNA away from the nucleolus.
Assuntos
Proteínas Nucleares , Ácidos Nucleicos Peptídicos , DNA Ribossômico/genética , Doxorrubicina/farmacologia , Proteínas Nucleares/metabolismo , Isoformas de Proteínas/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismoRESUMO
Metastatic spreading of cancer cells is a highly complex process directed primarily by the interplay between tumor microenvironment, cell surface receptors, and actin cytoskeleton dynamics. To advance our understanding of metastatic cancer dissemination, we have developed a model system that is based on two v-src transformed chicken sarcoma cell lines-the highly metastatic parental PR9692 and a non-metastasizing but fully tumorigenic clonal derivative PR9692-E9. Oligonucleotide microarray analysis of both cell lines revealed that the gene encoding the transcription factor EGR1 was downregulated in the non-metastatic PR9692-E9 cells. Further investigation demonstrated that the introduction of exogenous EGR1 into PR9692-E9 cells restored their metastatic potential to a level indistinguishable from parental PR9692 cells. Microarray analysis of EGR1 reconstituted cells revealed the activation of genes that are crucial for actin cytoskeleton contractility (MYL9), filopodia formation (MYO10), the production of specific extracellular matrix components (HAS2, COL6A1-3) and other essential pro-metastatic abilities.
Assuntos
Transformação Celular Neoplásica/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Metástase Neoplásica/genética , Proteína Oncogênica pp60(v-src)/metabolismo , Sarcoma/genética , Sarcoma/patologia , Animais , Adesão Celular , Linhagem Celular , Movimento Celular , Proliferação de Células , Transformação Celular Neoplásica/patologia , Galinhas , Citoesqueleto/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Cinética , Proteína Oncogênica pp60(v-src)/genética , FenótipoRESUMO
Diverse stress insults trigger interactions of PML with nucleolus, however, the function of these PML nucleolar associations (PNAs) remains unclear. Here we show that during induction of DNA damage-induced senescence in human non-cancerous cells, PML accumulates at the nucleolar periphery simultaneously with inactivation of RNA polymerase I (RNAP I) and nucleolar segregation. Using time-lapse and high-resolution microscopy, we followed the genesis, structural transitions and destiny of PNAs to show that: 1) the dynamic structural changes of the PML-nucleolar interaction are tightly associated with inactivation and reactivation of RNAP I-mediated transcription, respectively; 2) the PML-nucleolar compartment develops sequentially under stress and, upon stress termination, it culminates in either of two fates: disappearance or persistence; 3) all PNAs stages can associate with DNA damage markers; 4) the persistent, commonly long-lasting PML multi-protein nucleolar structures (PML-NDS) associate with markers of DNA damage, indicating a role of PNAs in persistent DNA damage response characteristic for senescent cells. Given the emerging evidence implicating PML in homologous recombination-directed DNA repair, we propose that PNAs contribute to sequestration and faithful repair of the highly unstable ribosomal DNA repeats, a fundamental process to maintain a precise balance between DNA repair mechanisms, with implications for genomic integrity and aging.
Assuntos
Nucléolo Celular/metabolismo , Senescência Celular , Dano ao DNA , Proteína da Leucemia Promielocítica/metabolismo , Células Cultivadas , Doxorrubicina , Humanos , Imageamento Tridimensional , Estresse FisiológicoRESUMO
The bulk of DNA damage caused by ionizing radiation (IR) is generally repaired within hours, yet a subset of DNA lesions may persist even for long periods of time. Such persisting IR-induced foci (pIRIF) co-associate with PML nuclear bodies (PML-NBs) and are among the characteristics of cellular senescence. Here we addressed some fundamental questions concerning the nature and determinants of this co-association, the role of PML-NBs at such sites, and the reason for the persistence of DNA damage in human primary cells. We show that the persistent DNA lesions are devoid of homologous recombination (HR) proteins BRCA1 and Rad51. Our super-resolution microscopy-based analysis showed that PML-NBs are juxtaposed to and partially overlap with the pIRIFs. Notably, depletion of 53BP1 resulted in decreased intersection between PML-NBs and pIRIFs implicating the RNF168-53BP1 pathway in their interaction. To test whether the formation and persistence of IRIFs is PML-dependent and to investigate the role of PML in the context of DNA repair and senescence, we genetically deleted PML in human hTERT-RPE-1 cells. Unexpectedly, upon high-dose IR treatment, cells displayed similar DNA damage signalling, repair dynamics and kinetics of cellular senescence regardless of the presence or absence of PML. In contrast, the PML knock-out cells showed increased sensitivity to low doses of IR and DNA-damaging agents mitomycin C, cisplatin and camptothecin that all cause DNA lesions requiring repair by HR. These results, along with enhanced sensitivity of the PML knock-out cells to DNA-PK and PARP inhibitors implicate PML as a factor contributing to HR-mediated DNA repair.
Assuntos
Dano ao DNA , Reparo do DNA , Corpos de Inclusão Intranuclear/metabolismo , Proteína da Leucemia Promielocítica/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Senescência Celular/genética , Senescência Celular/efeitos da radiação , Reparo do DNA/efeitos da radiação , Relação Dose-Resposta à Radiação , Técnicas de Inativação de Genes , Humanos , Corpos de Inclusão Intranuclear/efeitos da radiação , Proteína da Leucemia Promielocítica/deficiência , Proteína da Leucemia Promielocítica/genéticaRESUMO
How lymphoma cells (LCs) invade the brain during the development of central nervous system lymphoma (CNSL) is unclear. We found that NF-κB-induced gliosis promotes CNSL in immunocompetent mice. Gliosis elevated cell-adhesion molecules, which increased LCs in the brain but was insufficient to induce CNSL. Astrocyte-derived CCL19 was required for gliosis-induced CNSL. Deleting CCL19 in mice or CCR7 from LCs abrogated CNSL development. Two-photon microscopy revealed LCs transiently entering normal brain parenchyma. Astrocytic CCL19 enhanced parenchymal CNS retention of LCs, thereby promoting CNSL formation. Aged, gliotic wild-type mice were more susceptible to forming CNSL than young wild-type mice, and astrocytic CCL19 was observed in both human gliosis and CNSL. Therefore, CCL19-CCR7 interactions may underlie an increased age-related risk for CNSL.
Assuntos
Envelhecimento/patologia , Neoplasias do Sistema Nervoso Central/patologia , Quimiocina CCL19/metabolismo , Gliose/patologia , Linfoma/patologia , Adolescente , Adulto , Idoso , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Barreira Hematoencefálica/citologia , Barreira Hematoencefálica/diagnóstico por imagem , Barreira Hematoencefálica/patologia , Linhagem Celular Tumoral/transplante , Neoplasias do Sistema Nervoso Central/diagnóstico por imagem , Neoplasias do Sistema Nervoso Central/cirurgia , Quimiocina CCL19/genética , Quimiocina CXCL12 , Modelos Animais de Doenças , Feminino , Gliose/diagnóstico por imagem , Humanos , Microscopia Intravital , Linfoma/diagnóstico por imagem , Linfoma/cirurgia , Masculino , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência por Excitação Multifotônica , Pessoa de Meia-Idade , NF-kappa B/metabolismo , Receptores CCR7/genética , Receptores CCR7/metabolismo , Imagem com Lapso de Tempo , Adulto JovemRESUMO
Dynamic polarisation of tumour cells is essential for metastasis. While the role of polarisation during dedifferentiation and migration is well established, polarisation of metastasising tumour cells during phases of detachment has not been investigated. Here we identify and characterise a type of polarisation maintained by single cells in liquid phase termed single-cell (sc) polarity and investigate its role during metastasis. We demonstrate that sc polarity is an inherent feature of cells from different tumour entities that is observed in circulating tumour cells in patients. Functionally, we propose that the sc pole is directly involved in early attachment, thereby affecting adhesion, transmigration and metastasis. In vivo, the metastatic capacity of cell lines correlates with the extent of sc polarisation. By manipulating sc polarity regulators and by generic depolarisation, we show that sc polarity prior to migration affects transmigration and metastasis in vitro and in vivo.
Assuntos
Polaridade Celular , Metástase Neoplásica/fisiopatologia , Neoplasias/fisiopatologia , Animais , Linhagem Celular Tumoral , Movimento Celular , Feminino , Humanos , Camundongos Endogâmicos C57BL , Metástase Neoplásica/patologia , Neoplasias/patologia , Células Neoplásicas Circulantes/patologiaRESUMO
The neural crest (NC) is a transient dynamic structure of ectodermal origin, found in early vertebrate embryos. The multipotential NC cells migrate along well defined routes, differentiate to various cell types including melanocytes and participate in the formation of various permanent tissues. As there is only limited information about the molecular mechanisms controlling early events in melanocyte specification and development, we exploited the AMV v-Myb transcriptional regulator, which directs differentiation of in vitro chicken NC cells to the melanocyte lineage. This activity is strictly dependent on v-Myb specifically binding to the Myb recognition DNA element (MRE). The two tamoxifen-inducible v-Myb alleles were constructed one which recognizes the MRE and one which does not. These were activated in ex ovo NC cells, and the expression profiles of resulting cells were analyzed using Affymetrix microarrays and RT-PCR. These approaches revealed up-regulation of the BMP antagonist Gremlin 2 mRNA, and down-regulation of mRNAs encoding several epithelial genes including KRT19 as very early events following the activation of melanocyte differentiation by v-Myb. The enforced v-Myb expression in neural tubes of chicken embryos resulted in detectable presence of Gremlin 2 mRNA. However, expression of Gremlin 2 in NC cells did not promote formation of melanocytes suggesting that Gremlin 2 is not the master regulator of melanocytic differentiation.
Assuntos
Proteínas Aviárias/metabolismo , Diferenciação Celular , Melanócitos/fisiologia , Crista Neural/citologia , Proteínas Oncogênicas v-myb/fisiologia , Ativação Transcricional , Alelos , Animais , Proteínas Aviárias/genética , Proteína Morfogenética Óssea 5/genética , Proteína Morfogenética Óssea 5/metabolismo , Células Cultivadas , Embrião de Galinha , Regulação da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Queratina-19/genética , Queratina-19/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , TranscriptomaRESUMO
The myofibroblast is a mesenchymal cell characterized by synthesis of the extracellular matrix, plus contractile and secretory activities. Myofibroblasts participate in physiological tissue repair, but can also cause devastating fibrosis. They are present in the tumor stroma of carcinomas and contribute to tumor growth and spreading. As myofibroblasts derive from various cell types and appear in a variety of tissues, there is marked variability in their phenotype. As regulatory mechanisms of wound healing are likely conserved among vertebrates, detailed knowledge of these mechanisms in more distant species will help to distinguish general from specific phenomena. To provide this as yet missing comparison, we analyzed the impact of the chemical inhibition of TGF-beta signaling on gene expression in chicken embryo dermal myofibroblasts. We revealed genes previously reported in mammalian systems (e.g. SPON2, ASPN, COMP, LUM, HAS2, IL6, CXCL12, VEGFA) as well as novel TGF-beta dependent genes, among them PGF, VEGFC, PTN, FAM180A, FIBIN, ZIC1, ADCY2, RET, HHIP and DNER. Inhibition of TGF-beta signaling also induced multiple genes, including NPR3, AGTR2, MTUS1, SOD3 and NOV. We also analyzed the effects of long term inhibition, and found that it is not able to induce myofibroblast dedifferentiation.
Assuntos
Galinhas/genética , Derme/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Miofibroblastos/fisiologia , Fator de Crescimento Transformador beta/metabolismo , Animais , Células Cultivadas , Embrião de Galinha , Derme/efeitos dos fármacos , Miofibroblastos/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Receptor do Fator de Crescimento Transformador beta Tipo II , Receptores de Fatores de Crescimento Transformadores beta/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/antagonistas & inibidoresRESUMO
Fibrotic diseases are a group of pathologies with high incidence and mortality. Despite extensive research efforts, effective therapies are still not available. Understanding the molecular mechanisms driving the onset, progression and possible resolution of fibrosis is a prerequisite to the development of successful therapies. The central role of the TGF-ß pathway and myofibroblasts in the pathogenesis of fibrosis is now generally accepted. The possible mechanisms of myofibroblast elimination or dedifferentiation, on the other hand, are still almost uncharted territory. Here we show that sustained expression of some components of MAPK signaling pathway (PDGFB, Ha-Ras(G12V) or the transcription factor EGR4) in primary chicken embryo dermal myofibroblasts results in a loss of autocrine TGF-ß signaling and suppression of the myofibroblastic phenotype, characterized by the loss of alpha smooth muscle actin fibers and a substantial reduction in the production of extracellular matrix. Detailed analysis of the possible molecular mechanisms employed by EGR4 revealed FOXG1, BAMBI, NAB1, NAB2 and DUSP5 genes forming an EGR4 regulated network counteracting autocrine TGF-ß signaling. We have also found that a combination of chemical inhibition of TGF-ß signaling and perturbation of MAPK signaling with phorbol ester mimics the anti-fibrotic effects of PDGFB, Ha-Ras(G12V) and EGR4.
Assuntos
Desdiferenciação Celular , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Miofibroblastos/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Actinas/genética , Actinas/metabolismo , Animais , Embrião de Galinha , Miofibroblastos/citologia , Ésteres de Forbol/farmacologia , Transdução de SinaisRESUMO
UNLABELLED: Comparing the gene expression profiles of metastatic and nonmetastatic cells has the power to reveal candidate metastasis-associated genes, whose involvement in metastasis can be experimentally tested. In this study, differentially expressed genes were explored in the v-src-transformed metastatic cell line PR9692 and its nonmetastatic subclone PR9692-E9. First, the contribution of homeodomain only protein X (HOPX) in metastasis formation and development was assessed. HOPX-specific knockdown decreased HOPX expression in the nonmetastatic subclone and displayed reduced cell motility in vitro. Critically, HOPX knockdown decreased the in vivo metastatic capacity in a syngeneic animal model system. Genomic analyses identified a cadre of genes affected by HOPX knockdown that intersected significantly with genes previously found to be differentially expressed in metastatic versus nonmetastatic cells. Furthermore, 232 genes were found in both screens with at least a two-fold change in gene expression, and a number of high-confidence targets were validated for differential expression. Importantly, significant changes were demonstrated in the protein expression level of three metastatic-associated genes (NCAM, FOXG1, and ITGA4), and knockdown of one of the identified HOPX-regulated metastatic genes, ITGA4, showed marked inhibition of cell motility and metastasis formation. These data demonstrate that HOPX is a metastasis-associated gene and that its knockdown decreases the metastatic activity of v-src-transformed cells through altered gene expression patterns. IMPLICATIONS: This study provides new mechanistic insight into a HOPX-regulated metastatic dissemination signature.