Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nano Lett ; 18(3): 1916-1924, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29488768

RESUMO

T cell activation requires the coordination of a variety of signaling molecules including T cell receptor-specific signals and costimulatory signals. Altering the composition and distribution of costimulatory molecules during stimulation greatly affects T cell functionality for applications such as adoptive cell therapy (ACT), but the large diversity in these molecules complicates these studies. Here, we develop and validate a reductionist T cell activation platform that enables streamlined customization of stimulatory conditions. This platform is useful for the optimization of ACT protocols as well as the more general study of immune T cell activation. Rather than decorating particles with both signal 1 antigen and signal 2 costimulus, we use distinct, monospecific, paramagnetic nanoparticles, which are then clustered on the cell surface by a magnetic field. This allows for rapid synthesis and characterization of a small number of single-signal nanoparticles which can be systematically combined to explore and optimize T cell activation. By increasing cognate T cell enrichment and incorporating additional costimulatory molecules using this platform, we find significantly higher frequencies and numbers of cognate T cells stimulated from an endogenous population. The magnetic field-induced association of separate particles thus provides a tool for optimizing T cell activation for adoptive immunotherapy and other immunological studies.


Assuntos
Transferência Adotiva/métodos , Linfócitos T CD8-Positivos/imunologia , Ativação Linfocitária , Magnetismo/métodos , Nanopartículas de Magnetita/química , Animais , Células Cultivadas , Campos Magnéticos , Camundongos Endogâmicos C57BL
2.
Biochim Biophys Acta ; 1853(4): 781-90, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25200637

RESUMO

Artificial antigen presenting cells (aAPCs) are engineered platforms for T cell activation and expansion, synthesized by coupling T cell activating proteins to the surface of cell lines or biocompatible particles. They can serve both as model systems to study the basic aspects of T cell signaling and translationally as novel approaches for either active or adoptive immunotherapy. Historically, these reductionist systems have not been designed to mimic the temporally and spatially complex interactions observed during endogenous T cell-APC contact, which include receptor organization at both micro- and nanoscales and dynamic changes in cell and membrane morphologies. Here, we review how particle size and shape, as well as heterogenous distribution of T cell activating proteins on the particle surface, are critical aspects of aAPC design. In doing so, we demonstrate how insights derived from endogenous T cell activation can be applied to optimize aAPC, and in turn how aAPC platforms can be used to better understand endogenous T cell stimulation. This article is part of a Special Issue entitled: Nanoscale membrane organisation and signalling.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Células Artificiais , Fenômenos Biofísicos , Animais , Comunicação Celular , Humanos , Transdução de Sinais , Linfócitos T/citologia
3.
Small ; 11(13): 1519-25, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25641795

RESUMO

Non-spherical nanodimensional artificial antigen presenting cells (naAPCs) offer the potential to systemically induce an effective antigen-specific immune response. In this report it is shown biodegradable ellipsoidal naAPCs mimic the T-Cell/APC interaction better than equivalent spherical naAPCs. In addition, it is demonstrated ellipsoidal naAPCs offer reduced non-specific cellular uptake and a superior pharmacokinetic profile compared to spherical naAPCs.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Antígenos/imunologia , Ativação Linfocitária , Linfócitos T/imunologia , Animais , Humanos , Camundongos
4.
Crit Rev Biomed Eng ; 41(3): 205-21, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24579644

RESUMO

Systems biology has primarily focused on studying genomics, transcriptomics, and proteomics and their dynamic interactions. These, however, represent only the potential for a biological outcome since the ultimate phenotype at the level of the eventually produced metabolites is not taken into consideration. The emerging field of metabolomics provides complementary guidance toward an integrated approach to this problem: It allows global profiling of the metabolites of a cell, tissue, or host and presents information on the actual end points of a response. A wide range of data collection methods are currently used and allow the extraction of global or tissue-specific metabolic profiles. The great amount and complexity of data that are collected require multivariate analysis techniques, but the increasing amount of work in this field has made easy-to-use analysis programs readily available. Metabolomics has already shown great potential in drug toxicity studies, disease modeling, and diagnostics and may be integrated with genomic and proteomic data in the future to provide in-depth understanding of systems, pathways, and their functionally dynamic interactions. In this review we discuss the current state of the art of metabolomics, its applications, and future potential.


Assuntos
Metabolômica/métodos , Algoritmos , Animais , Biomarcadores/metabolismo , Biologia Computacional/métodos , Doença das Coronárias/metabolismo , Estado Terminal , Citocinas/metabolismo , Humanos , Espectroscopia de Ressonância Magnética/métodos , Espectrometria de Massas/métodos , Metabolômica/tendências , Neoplasias/metabolismo , Obesidade/metabolismo , Fenótipo , Análise de Componente Principal , Software , Biologia de Sistemas , Testes de Toxicidade
5.
Acta Biomater ; 160: 187-197, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36812956

RESUMO

Artificial antigen presenting cells are biomimetic particles that recapitulate the signals presented by natural antigen presenting cells in order to stimulate T cells in an antigen-specific manner using an acellular platform. We have engineered an enhanced nanoscale biodegradable artificial antigen presenting cell by modulating particle shape to achieve a nanoparticle geometry that allows for increased radius of curvature and surface area for T cell contact. The non-spherical nanoparticle artificial antigen presenting cells developed here have reduced nonspecific uptake and improved circulation time compared both to spherical nanoparticles and to traditional microparticle technologies. Additionally, the anisotropic nanoparticle artificial antigen presenting cells efficiently engage with and activate T cells, ultimately leading to a marked anti-tumor effect in a mouse melanoma model that their spherical counterparts were unable to achieve. STATEMENT OF SIGNIFICANCE: Artificial antigen presenting cells (aAPC) can activate antigen-specific CD8+ T cells but have largely been limited to microparticle-based platforms and ex vivo T cell expansion. Although more amenable to in vivo use, nanoscale aAPC have traditionally been ineffective due to limited surface area available for T cell interaction. In this work, we engineered non-spherical biodegradable nanoscale aAPC to investigate the role of particle geometry and develop a translatable platform for T cell activation. The non-spherical aAPC developed here have increased surface area and a flatter surface for T cell engagement and, therefore, can more effectively stimulate antigen-specific T cells, resulting in anti-tumor efficacy in a mouse melanoma model.


Assuntos
Melanoma , Nanopartículas , Animais , Camundongos , Células Apresentadoras de Antígenos , Ativação Linfocitária , Imunoterapia/métodos , Melanoma/patologia , Antígenos
6.
ACS Appl Mater Interfaces ; 13(7): 7913-7923, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33573372

RESUMO

Biomimetic biomaterials are being actively explored in the context of cancer immunotherapy because of their ability to directly engage the immune system to generate antitumor responses. Unlike cellular therapies, biomaterial-based immunotherapies can be precisely engineered to exhibit defined characteristics including biodegradability, physical size, and tuned surface presentation of immunomodulatory signals. In particular, modulating the interface between the biomaterial surface and the target biological cell is key to enabling biological functions. Synthetic artificial antigen presenting cells (aAPCs) are promising as a cancer immunotherapy but are limited in clinical translation by the requirement of ex vivo cell manipulation and adoptive transfer of antigen-specific CD8+ T cells. To move toward acellular aAPC technology for in vivo use, we combine poly(lactic-co-glycolic acid) (PLGA) and cationic poly(beta-amino-ester) (PBAE) to form a biodegradable blend based on the hypothesis that therapeutic aAPCs fabricated from a cationic blend may have improved functions. PLGA/PBAE aAPCs demonstrate enhanced surface interactions with antigen-specific CD8+ T cells that increase T cell activation and expansion ex vivo, associated with significantly increased conjugation efficiency of T cell stimulatory signals to the aAPCs. Critically, these PLGA/PBAE aAPCs also expand antigen-specific cytotoxic CD8+ T cells in vivo without the need of adoptive transfer. Treatment with PLGA/PBAE aAPCs in combination with checkpoint therapy decreases tumor growth and extends survival in a B16-F10 melanoma mouse model. These results demonstrate the potential of PLGA/PBAE aAPCs as a biocompatible, directly injectable acellular therapy for cancer immunotherapy.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Células Artificiais/imunologia , Imunoterapia , Melanoma/terapia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/imunologia , Polímeros/química , Animais , Células Artificiais/química , Linfócitos T CD8-Positivos/imunologia , Cátions/química , Cátions/imunologia , Melanoma/imunologia , Camundongos , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Propriedades de Superfície
7.
Int Rev Cell Mol Biol ; 341: 277-362, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30262034

RESUMO

T cells are crucial contributors to mounting an effective immune response and increasingly the focus of therapeutic interventions in cancer, infectious disease, and autoimmunity. Translation of current T cell immunotherapies has been hindered by off-target toxicities, limited efficacy, biological variability, and high costs. As T cell therapeutics continue to develop, the application of engineering concepts to control their delivery and presentation will be critical for their success. Here, we outline the engineer's toolbox and contextualize it with the biology of T cells. We focus on the design principles of T cell modulation platforms regarding size, shape, material, and ligand choice. Furthermore, we review how application of these design principles has already impacted T cell immunotherapies and our understanding of T cell biology. Recent, salient examples from protein engineering, synthetic particles, cellular and genetic engineering, and scaffolds and surfaces are provided to reinforce the importance of design considerations. Our aim is to provide a guide for immunologists, engineers, clinicians, and the pharmaceutical sector for the design of T cell-targeting platforms.


Assuntos
Imunoterapia/métodos , Neoplasias/terapia , Linfócitos T/imunologia , Animais , Engenharia Genética , Humanos
8.
ACS Nano ; 11(6): 5417-5429, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28589725

RESUMO

We describe the development of a nanoparticle platform that overcomes the immunosuppressive tumor microenvironment. These nanoparticles are coated with two different antibodies that simultaneously block the inhibitory checkpoint PD-L1 signal and stimulate T cells via the 4-1BB co-stimulatory pathway. These "immunoswitch" particles significantly delay tumor growth and extend survival in multiple in vivo models of murine melanoma and colon cancer in comparison to the use of soluble antibodies or nanoparticles separately conjugated with the inhibitory and stimulating antibodies. Immunoswitch particles enhance effector-target cell conjugation and bypass the requirement for a priori knowledge of tumor antigens. The use of the immunoswitch nanoparticles resulted in an increased density, specificity, and in vivo functionality of tumor-infiltrating CD8+ T cells. Changes in the T cell receptor repertoire against a single tumor antigen indicate immunoswitch particles expand an effective set of T cell clones. Our data show the potential of a signal-switching approach to cancer immunotherapy that simultaneously targets two stages of the cancer immunity cycle resulting in robust antitumor activity.


Assuntos
Ligante 4-1BB/imunologia , Anticorpos/uso terapêutico , Antígeno B7-H1/imunologia , Neoplasias do Colo/terapia , Imunoterapia/métodos , Melanoma/terapia , Nanopartículas/uso terapêutico , Animais , Anticorpos/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Neoplasias do Colo/imunologia , Neoplasias do Colo/patologia , Melanoma/imunologia , Melanoma/patologia , Camundongos , Camundongos Endogâmicos C57BL , Microambiente Tumoral
9.
IEEE Trans Biomed Eng ; 58(12): 3504-7, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21775253

RESUMO

Glucocorticoids are steroid hormones which, among other functions, exert an antiinflammatory effect. Endogenous glucocorticoids are normally secreted by the adrenal gland in discrete bursts. It is becoming increasingly evident that this pulsatile secretion pattern, leading to ultradian rhythms of plasma glucocorticoid levels, may have important downstream regulatory effects on glucocorticoid-responsive genes. Mathematical modeling of this system can compliment recent experimental data and quantitatively evaluate hypothesized mechanistic underpinnings of differential pulsatile signal transduction. In this paper, we describe an integrated model of pulsatile secretion of glucocorticoids by the hypothalamic-pituitary-adrenal (HPA) axis and the pharmacodynamic effect of glucocorticoids. This model is used to investigate the difference in transcriptional responses to pulsatile and constant glucocorticoid exposure. Nonlinearity in ligand-receptor kinetics leads to the differential expression of glucocorticoid-responsive genes in response to different patterns of glucocorticoid secretion, even when the total amount of glucocorticoid exposure is held constant. Understanding the implications of ultradian rhythms in glucocorticoids is important in studying the dysregulation of HPA axis function leading to altered glucocorticoid secretion patterns in disease.


Assuntos
Glucocorticoides/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Animais , Humanos , Modelos Biológicos , Periodicidade , Ratos , Biologia de Sistemas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA