Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 78(8): 4003-4018, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33783564

RESUMO

Kindlin3 (K3), a FERM domain containing protein expressed in hematopoietic cells controls integrin activation and thus hemostatic and inflammatory responses. However, its role in the mechanics of plasma membrane remains unclear. Here, we show that genetic knockout of K3 in microglia and macrophages resulted in defective plasma membrane tension and membrane blebbing. Atomic force microscopy (AFM) of K3-deficient cells revealed a significant loss in membrane-to-cortex attachment (MCA), and consequently reduced membrane tension. This loss in MCA is amplified by the mislocalization of the cell cortex proteins-ezrin, radixin, and moesin (ERM)-to the plasma membrane of microglia and macrophages. Re-expression of K3 in K3-deficient macrophages rescued the defects and localization of ERMs implying a key role for K3 in MCA. Analysis of two K3 mutants, K3int affecting integrin binding and activation, and K3pxn/act disrupting binding to paxillin and actin but not integrin functions, demonstrated that the role of K3 in membrane mechanics is separate from integrin activation. The K3pxn/act mutant substantially diminished both membrane tension and Yes-associated protein (YAP) translocation to the nucleus, while preserving integrin activation, cell spreading, and migration. Together, our results show that K3 coordinates membrane mechanics, ERM protein recruitment to the membrane, and YAP translocation by linking integrin at the membrane to paxillin and actin of the cytoskeleton. This novel function of K3 is distinct from its role in integrin activation.


Assuntos
Membrana Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Macrófagos/metabolismo , Proteínas de Membrana/metabolismo , Microglia/metabolismo , Proteínas de Neoplasias/metabolismo , Actinas/metabolismo , Animais , Fenômenos Biomecânicos , Membrana Celular/genética , Proteínas do Citoesqueleto/genética , Técnicas de Inativação de Genes , Humanos , Integrinas/metabolismo , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos/metabolismo , Proteínas de Neoplasias/genética , Células RAW 264.7
2.
Exp Cell Res ; 384(1): 111589, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31473210

RESUMO

Abdominal aortic aneurysms (AAA) are characterized by matrix remodeling, elastin degradation, absence of nitric oxide (NO) signaling, and inflammation, influencing smooth muscle cell (SMC) phenotype and gene expression. Little is known about the biomolecular release and intrinsic biomechanics of human AAA-SMCs. NO delivery could be an attractive therapeutic strategy to restore lost functionality of AAA-SMCs by inhibiting inflammation and cell stiffening. We aim to establish the differences in phenotype and gene expression of adult human AAA-SMCs from healthy SMCs. Based on our previous study which showed benefits of optimal NO dosage delivered via S-Nitrosoglutathione (GSNO) to healthy aortic SMCs, we tested whether such benefits would occur in AAA-SMCs. The mRNA expression of three genes involved in matrix degradation (ACE, ADAMTS5 and ADAMTS8) was significantly downregulated in AAA-SMCs. Total protein and glycosaminoglycans synthesis were higher in AAA-SMCs than healthy-SMCs (p < 0.05 for AAA-vs. healthy- SMC cultures) and was enhanced by GSNO and 3D cultures (p < 0.05 for 3D vs. 2D cultures; p < 0.05 for GSNO vs. non-GSNO cases). Elastin gene expression, synthesis and deposition, desmosine crosslinker levels, and lysyl oxidase (LOX) functional activity were lower, while cell proliferation, iNOS, LOX and fibrillin-1 gene expressions were higher in AAA-SMCs (p < 0.05 between respective cases), with differential benefits from GSNO exposure. GSNO and 3D cultures reduced MMPs -2, -9, and increased TIMP-1 release in AAA-SMC cultures (p < 0.05 for GSNO vs. non-GSNO cultures). AAA-SMCs were inherently stiffer and had smoother surface than healthy SMCs (p < 0.01 in both cases), but GSNO reduced stiffness (~25%; p < 0.01) and increased roughness (p < 0.05) of both cell types. In conclusion, exogenously-delivered NO offers an attractive strategy by providing therapeutic benefits to AAA-SMCs.


Assuntos
Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/metabolismo , Expressão Gênica/genética , Miócitos de Músculo Liso/metabolismo , Óxido Nítrico/metabolismo , Adulto , Idoso , Aorta/metabolismo , Estudos de Casos e Controles , Proliferação de Células/genética , Células Cultivadas , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Humanos , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Músculo Liso Vascular/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Fenótipo , Inibidor Tecidual de Metaloproteinase-1/metabolismo
3.
Biochem Biophys Res Commun ; 518(3): 573-578, 2019 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-31445704

RESUMO

Cell surface receptors are the key contributors of macrophage function. Most macrophage cell surface receptors are glycoproteins with sialic acids at the terminal of their glycans. It is well recognized that lipopolysaccharide (LPS) induces cell surface sialylation changes that may in turn contribute to macrophage functions. In addition, cellular mechanics such as elasticity is also a major determinant of macrophage function, which in turn is modulated by LPS. In this report, we characterized the sialylation status of macrophages upon LPS stimulation and assessed the changes in its mechanical properties and function. Specifically, we confirmed that sialylation status is closely related to macrophage biomechanical characteristics (elastic modulus, tether force, tether radius, adhesion force, and membrane tension) and thus directly involved in macrophage function. Further, we modulated macrophage sialylation status by feeding the cell with exogenous free sialic acid (Neu5Ac, Neu5Gc) and sialidase inhibitors, and examined the resulting effects on cellular mechanics and function. A systematic recognition of sialylation status related to cellular mechanics of macrophages will contribute to defining their phenotypes and elucidate macrophage functional diversity.


Assuntos
Lipopolissacarídeos/imunologia , Macrófagos/imunologia , Ácido N-Acetilneuramínico/análise , Fenômenos Biomecânicos , Linhagem Celular , Elasticidade , Humanos , Macrófagos/citologia , Ácido N-Acetilneuramínico/imunologia
4.
Exp Cell Res ; 362(1): 159-171, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29129566

RESUMO

Neural progenitor cell (NPC) fate is influenced by a variety of biological cues elicited from the surrounding microenvironment and recent studies suggest their possible role in pediatric glioblastoma multiforme (GBM) development. Since a few GBM cells also display NPC characteristics, it is not clear whether NPCs transform to tumor cell phenotype leading to the onset of GBM formation, or NPCs migrate to developing tumor sites in response to paracrine signaling from GBM cells. Elucidating the paracrine interactions between GBM cells and NPCs in vivo is challenging due to the inherent complexity of the CNS. Here, we investigated the interactions between human NPCs (ReNcell) and human pediatric GBM-derived cells (SJ-GBM2) using a Transwell® coculture setup to assess the effects of GBM cells on ReNcells (cytokine and chemokine release, viability, phenotype, differentiation, migration). Standalone ReNcell or GBM cultures served as controls. Qualitative and quantitative results from ELISA®, Live/Dead® and BrdU assays, immunofluorescence labeling, western blot analysis, and scratch test suggests that although ReNcell viability remained unaffected in the presence of pediatric GBM cells, their morphology, phenotype, differentiation patterns, neurite outgrowth, migration patterns (average speed, distance, number of cells) and GSK-3ß expression were significantly influenced. The cumulative distance migrated by the cells in each condition was fit to Furth's formula, derived formally from Ornstein-Uhlenbeck process. ReNcell differentiation into neural lineage was compromised and astrogenesis promoted within cocultures. Such coculture platform could be extended to identify the specific molecules contributing to the observed phenomena, to investigate whether NPCs could be transplanted to replace lesions of excised tumor sites, and to elucidate the underlying molecular pathways involved in GBM-NPC interactions within the tumor microenvironment.


Assuntos
Glioblastoma/patologia , Células-Tronco Neurais/patologia , Neurogênese/fisiologia , Comunicação Parácrina/fisiologia , Células-Tronco/patologia , Diferenciação Celular/fisiologia , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Técnicas de Cocultura/métodos , Glioblastoma/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Células-Tronco Neurais/metabolismo , Fenótipo , Células-Tronco/metabolismo , Microambiente Tumoral/fisiologia
5.
Exp Cell Res ; 370(2): 680-691, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30048616

RESUMO

Numerous chemicals including environmental toxicants and drugs have not been fully evaluated for developmental neurotoxicity. A key gap exists in the ability to predict accurately and robustly in vivo outcomes based on in vitro assays. This is particularly the case for predicting the toxicity of chemicals on the developing human brain. A critical need for such in vitro assays is choice of a suitable model cell type. To that end, we have performed high-throughput in vitro assessment of proliferation and differentiation of human neural stem cells (hNSCs). Conventional in vitro assays typically use immunofluorescence staining to quantify changes in cell morphology and expression of neural cell-specific biomarkers, which is often time-consuming and subject to variable specificities of available antibodies. To alleviate these limitations, we developed a miniaturized, three-dimensional (3D) hNSC culture with ReNcell VM on microarray chip platforms and established a high-throughput promoter-reporter assay system using recombinant lentiviruses on hNSC spheroids to assess cell viability, self-renewal, and differentiation. Optimum cell viability and spheroid formation of 3D ReNcell VM culture were observed on a micropillar chip over a period of 9 days in a mixture of 0.75% (w/v) alginate and 1 mg/mL growth factor reduced (GFR) Matrigel with 25 mM CaCl2 as a crosslinker for alginate. In addition, 3D ReNcell VM culture exhibited self-renewal and differentiation on the microarray chip platform, which was efficiently monitored by enhanced green fluorescent protein (EGFP) expression of four NSC-specific biomarkers including sex determining region Y-box 2 (SOX2), glial fibrillary acidic protein (GFAP), synapsin1, and myelin basic protein (MBP) with the promoter-reporter assay system.


Assuntos
Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Células-Tronco Neurais/metabolismo , Neurônios/citologia , Técnicas de Cultura de Células/métodos , Sobrevivência Celular/fisiologia , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Análise Serial de Proteínas/métodos
6.
Biotechnol Bioeng ; 115(8): 2013-2026, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29665002

RESUMO

Endogenous adult cardiac regenerative machinery is not capable of replacing the lost cells following myocardial infarction, often leading to permanent alterations in structure-function-mechanical properties. Regenerative therapies based on delivering autologous stem cells within an appropriate 3D milieu could meet such demand, by enabling homing and directed differentiation of the transplanted cells into lost specialized cell populations. Since type I collagen is the predominant cardiac tissue matrix protein, we here optimized the 3D niche which could promote time-dependent evolution of cardiomyogenesis from human bone marrow-derived mesenchymal stem cells (BM-MSC). 3D collagen gel physical and mechanical characteristics were assessed using SEM and AFM, respectively, while the standalone and combined effects of collagen concentration, culture duration, and 5-azacytidine (aza) dose on the phenotype and genotype of MSC spheroids were quantified using immunofluorescence labeling and RT-PCR analysis. Increasing collagen concentration led to a significant increase in Young's modulus (p < 0.01) but simultaneous decrease in the mean pore size, resulting in stiffer gels. Spheroid formation significantly modulated MSC differentiation and genotype, mostly due to better cell-cell interactions. Among the aza dosages tested, 10 µM appears to be optimal, while 3 mg/ml gels resulted in significantly lower cell viability compared to 1 or 2 mg/ml gels. Stiffer gels (2 and 3 mg/ml) and exposure to 10 µM aza upregulated early and late cardiac marker expressions in a time-dependent fashion. On the other hand, cell-cell signaling within the MSC spheroids seem to have a strong role in influencing mature cardiac markers expression, since neither aza nor gel stiffness seem to significantly improve their expression. Western blot analysis suggested that canonical Wnt/ß-catenin signaling pathway might be primarily mediating the observed benefits of aza on cardiac differentiation of MSC spheroids. In conclusion, 2 mg/ml collagen and 10 µM aza appears to offer optimal 3D microenvironment in terms of cell viability and time-dependent evolution of cardiomyogenesis from human BM-MSCs, with significant applications in cardiac tissue engineering and stem cell transplantation for regenerating lost cardiac tissue.


Assuntos
Azacitidina/metabolismo , Células da Medula Óssea/efeitos dos fármacos , Diferenciação Celular , Células-Tronco Mesenquimais/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Esferoides Celulares/fisiologia , Células da Medula Óssea/fisiologia , Sobrevivência Celular , Células Cultivadas , Colágeno/metabolismo , Humanos , Células-Tronco Mesenquimais/fisiologia
7.
Artigo em Inglês | MEDLINE | ID: mdl-39001829

RESUMO

OBJECTIVE: This study focuses on developing bioactive piezoelectric scaffolds that could deliver bioelectrical cues to potentially treat injuries to soft tissues such as skeletal muscles and promote muscle regeneration. APPROACH: To address the underexplored aspect of bioelectrical cues in skeletal muscle tissue engineering (SMTE), we developed piezoelectric bioinks based on natural bioactive materials such as alginate, gelatin, and chitosan. Extrusion-based 3D bioprinting was utilized to develop scaffolds that mimic muscle stiffness and generate electrical stimulation when subjected to forces. The biocompatibility of these scaffolds was tested with C2C12 muscle cell line. RESULTS: The bioinks demonstrated suitable rheological properties for 3D bioprinting, resulting in high-resolution composite alginate-gelatin-chitosan scaffolds with good structural fidelity. The scaffolds exhibited a 42-60 kPa stiffness, similar to muscles. When a controlled force of 5 N was applied to the scaffolds at a constant frequency of 4 Hz, they generated electrical fields and impulses (charge), indicating their suitability as a standalone scaffold to generate electrical stimulation and instill bioelectrical cues in the wound region. The cell viability and proliferation test results confirm the scaffold's biocompatibility with C2C12s and the benefit of piezoelectricity in promoting muscle cell growth kinetics. Our study indicates that our piezoelectric bioinks and scaffolds offer promise as autonomous electrical stimulation-generating regenerative therapy for SMTE. INNOVATION: A novel approach for treating skeletal muscle wounds was introduced by developing a bioactive electroactive scaffold capable of autonomously generating electrical stimulation without stimulators and electrodes. This scaffold offers a unique approach to enhancing skeletal muscle regeneration through bioelectric cues, addressing a major gap in the SMTE, i.e., fibrotic tissue formation due to delayed muscle regeneration. CONCLUSION: A piezoelectric scaffold was developed, providing a promising solution for promoting skeletal muscle regeneration. This development can potentially address skeletal muscle injuries and offer a unique approach to facilitating skeletal muscle wound healing.

8.
J Am Heart Assoc ; 13(8): e033881, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38563369

RESUMO

BACKGROUND: Pyroptosis executor GsdmD (gasdermin D) promotes atherosclerosis in mice and humans. Disulfiram was recently shown to potently inhibit GsdmD, but the in vivo efficacy and mechanism of disulfiram's antiatherosclerotic activity is yet to be explored. METHODS AND RESULTS: We used human/mouse macrophages, endothelial cells, and smooth muscle cells and a hyperlipidemic mouse model of atherosclerosis to determine disulfiram antiatherosclerotic efficacy and mechanism. The effects of disulfiram on several atheroprotective pathways such as autophagy, efferocytosis, phagocytosis, and gut microbiota were determined. Atomic force microscopy was used to determine the effects of disulfiram on the biophysical properties of the plasma membrane of macrophages. Disulfiram-fed hyperlipidemic apolipoprotein E-/- mice showed significantly reduced interleukin-1ß release upon in vivo Nlrp3 (NLR family pyrin domain containing 3) inflammasome activation. Disulfiram-fed mice showed smaller atherosclerotic lesions (~27% and 29% reduction in males and females, respectively) and necrotic core areas (~50% and 46% reduction in males and females, respectively). Disulfiram induced autophagy in macrophages, smooth muscle cells, endothelial cells, hepatocytes/liver, and atherosclerotic plaques. Disulfiram modulated other atheroprotective pathways (eg, efferocytosis, phagocytosis) and gut microbiota. Disulfiram-treated macrophages showed enhanced phagocytosis/efferocytosis, with the mechanism being a marked increase in cell-surface expression of efferocytic receptor MerTK. Atomic force microscopy analysis revealed altered biophysical properties of disulfiram-treated macrophages, showing increased order-state of plasma membrane and increased adhesion strength. Furthermore, 16sRNA sequencing of disulfiram-fed hyperlipidemic mice showed highly significant enrichment in atheroprotective gut microbiota Akkermansia and a reduction in atherogenic Romboutsia species. CONCLUSIONS: Taken together, our data show that disulfiram can simultaneously modulate several atheroprotective pathways in a GsdmD-dependent as well as GsdmD-independent manner.


Assuntos
Aterosclerose , Microbioma Gastrointestinal , Masculino , Feminino , Camundongos , Humanos , Animais , Dissulfiram , Eferocitose , Células Endoteliais/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Aterosclerose/prevenção & controle , Autofagia
9.
Micromachines (Basel) ; 14(7)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37512684

RESUMO

Miniaturization of liquid chromatography could help enhance sensitivity, reduce solvent usage, and detect small quantities of peptides. However, it demands better sample homogenization of the mobile phase. We here developed a mixer design based on the inline Kenics geometry, consisting of a periodic arrangement of twisted blades placed inside a cylindrical capillary that repeatedly cut and stack fluid elements to achieve rapid mixing in laminar flow regimes. The mixer design was optimized with respect to the twist angle and aspect ratio of the mixing units to achieve complete mixing at minimum pressure load cost. Results suggest that for optimal designs, for a mixer volume of ~70 µL, complete mixing is achieved within a distance smaller than 4 cm for a broad set of flow rate conditions ranging from 75 µL·min-1 to 7.5 mL·min-1. A salient feature that we introduce and test for the first time is the physical flexibility of the cylindrical capillary. The performance of the design remained robust when the mixing section was not rigid and bent in different topologies, as well as when changing the chemical composition of the mobile phase used.

10.
bioRxiv ; 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37905037

RESUMO

Pyroptosis executor Gasdermin (GsdmD) promotes atherosclerosis in mice and humans. Disulfiram (DSF) was recently shown to potently inhibit GsdmD, but the in-vivo efficacy and mechanism of DSF's anti-atherosclerotic activity is yet to be explored. We used human/mouse macrophages and a hyperlipidemic mouse model of atherosclerosis to determine DSF anti-atherosclerotic efficacy and mechanism. DSF-fed hyperlipidemic apoE -/- mice showed significantly reduced IL-1ß release upon in-vivo Nlrp3 inflammasome assembly and showed smaller atherosclerotic lesions (∼27% and 29% reduction in males and females, respectively). The necrotic core area was also smaller (∼50% and 46% reduction in DSF-fed males and females, respectively). DSF induced autophagy in macrophages, hepatocytes/liver, and in atherosclerotic plaques. DSF modulated other atheroprotective pathways such as efferocytosis, phagocytosis, and gut microbiota. DSF-treated macrophages showed enhanced phagocytosis/efferocytosis, with a mechanism being a marked increase in cell-surface expression of efferocytic receptor MerTK. Atomic-force microscopy analysis revealed altered biophysical membrane properties of DSF treated macrophages, showing increased ordered-state of the plasma membrane and increased adhesion strength. Furthermore, the 16sRNA sequencing of DSF-fed hyperlipidemic mice showed highly significant enrichment in atheroprotective gut microbiota Akkermansia and a reduction in atherogenic Romboutsia species. Taken together, our data shows that DSF can simultaneously modulate multiple atheroprotective pathways, and thus may serve as novel adjuvant therapeutic to treat atherosclerosis.

11.
Appl Biochem Biotechnol ; 194(5): 1938-1954, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35000124

RESUMO

Myocardial infarction (MI) causes cardiomyocyte death, provokes innate immune response, and initiates tissue remodeling. The intrinsic healing process is insufficient to replace the lost cells, or regenerate and restore the functional features of the native myocardium. Autologous bone marrow-derived mesenchymal stem cell (BM-MSC) transplantation is being explored to offer therapeutic potential after MI. Here, we cultured human BM-MSC spheroids in three-dimensional collagenous gels for 28 days under exposure to tumor necrosis factor-alpha (+ TNFα), and coculture with adult human cardiomyocytes, or with conditioned media (CM) pooled from TNFα-stimulated adult cardiomyocytes. MSC differentiation marker (CD90, GATA4, cTnI, cTnT, Cx43, MHC, α-actin) expression, matrix protein (elastin, hyaluonic acid, sulfated glycosaminoglycans, laminin, fibrillin, nitric oxide synthase) synthesis, and secretome (cytokines, chemokines, growth factors) release at days 12 and 28 were assessed. MSC density decreased with duration in all culture conditions, except in controls. GATA4 expression was higher in cocultures but lower in + TNFα cultures. Synthesis and deposition of various extracellular matrix proteins and lysyl oxidase within MSC cultures, as well as secretome composition, were strongly dependent on the culture condition and duration. Results suggest that TNFα-induced inflammation suppresses BM-MSC survival and differentiation into mature cardiomyocytes by day 28, while promoting matrix protein synthesis and cytokine release conducive to MI remodeling. These findings could have implications in developing tissue engienering and cell transplantation strategies targeting MI, as well as to develop therapuetics to target inflammation-induced matrix remodeling post-MI.


Assuntos
Células-Tronco Mesenquimais , Infarto do Miocárdio , Adulto , Células da Medula Óssea , Diferenciação Celular , Técnicas de Cocultura , Humanos , Inflamação/metabolismo , Miócitos Cardíacos , Secretoma , Fator de Necrose Tumoral alfa/metabolismo
12.
Micromachines (Basel) ; 13(10)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36296138

RESUMO

Computational fluid dynamics modeling was used to characterize the effect of the integration of constrictions defined by the vertices of hyperbolas on the flow structure in microfluidic serpentine channels. In the new topology, the Dean flows characteristic of the pressure-driven fluid motion along curved channels are combined with elongational flows and asymmetric longitudinal eddies that develop in the constriction region. The resulting complex flow structure is characterized by folding and stretching of the fluid volumes, which can promote enhanced mixing. Optimization of the geometrical parameters defining the constriction region allows for the development of an efficient micromixer topology that shows robust enhanced performance across a broad range of Reynolds numbers from Re = 1 to 100.

13.
Materials (Basel) ; 15(22)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36431432

RESUMO

Volumetric muscle loss (VML), which involves the loss of a substantial portion of muscle tissue, is one of the most serious acute skeletal muscle injuries in the military and civilian communities. The injured area in VML may be so severely affected that the body loses its innate capacity to regenerate new functional muscles. State-of-the-art biofabrication methods such as bioprinting provide the ability to develop cell-laden scaffolds that could significantly expedite tissue regeneration. Bioprinted cell-laden scaffolds can mimic the extracellular matrix and provide a bioactive environment wherein cells can spread, proliferate, and differentiate, leading to new skeletal muscle tissue regeneration at the defect site. In this study, we engineered alginate−gelatin composite inks that could be used as bioinks. Then, we used the inks in an extrusion printing method to develop design-specific scaffolds for potential VML treatment. Alginate concentration was varied between 4−12% w/v, while the gelatin concentration was maintained at 6% w/v. Rheological analysis indicated that the alginate−gelatin inks containing 12% w/v alginate and 6% w/v gelatin were most suitable for developing high-resolution scaffolds with good structural fidelity. The printing pressure and speed appeared to influence the printing accuracy of the resulting scaffolds significantly. All the hydrogel inks exhibited shear thinning properties and acceptable viscosities, though 8−12% w/v alginate inks displayed properties ideal for printing and cell proliferation. Alginate content, crosslinking concentration, and duration played significant roles (p < 0.05) in influencing the scaffolds' stiffness. Alginate scaffolds (12% w/v) crosslinked with 300, 400, or 500 mM calcium chloride (CaCl2) for 15 min yielded stiffness values in the range of 45−50 kPa, i.e., similar to skeletal muscle. The ionic strength of the crosslinking concentration and the alginate content significantly (p < 0.05) affected the swelling and degradation behavior of the scaffolds. Higher crosslinking concentration and alginate loading enhanced the swelling capacity and decreased the degradation kinetics of the printed scaffolds. Optimal CaCl2 crosslinking concentration (500 mM) and alginate content (12% w/v) led to high swelling (70%) and low degradation rates (28%) of the scaffolds. Overall, the results indicate that 12% w/v alginate and 6% w/v gelatin hydrogel inks are suitable as bioinks, and the printed scaffolds hold good potential for treating skeletal muscle defects such as VML.

14.
Adv Healthc Mater ; 11(8): e2102265, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35118812

RESUMO

Ischemic heart injury causes permanent cardiomyocyte loss and fibrosis impairing cardiac function. Tissue derived biomaterials have shown promise as an injectable treatment for the post-ischemic heart. Specifically, decellularized extracellular matrix (dECM) is a protein rich suspension that forms a therapeutic hydrogel once injected and improves the heart post-injury response in rodents and pig models. Current dECM-derived biomaterials are delivered to the heart as a liquid dECM hydrogel precursor or colloidal suspension, which gels over several minutes. To increase the functionality of the dECM therapy, an injectable solid dECM microparticle formulation derived from heart tissue to control sizing and extend stability in aqueous conditions is developed. When delivered into the infarcted mouse heart, these dECM microparticles protect cardiac function promote vessel density and reduce left ventricular remodeling by sustained delivery of biomolecules. Longer retention, higher stiffness, and slower protein release of dECM microparticles are noted compared to liquid dECM hydrogel precursor. In addition, the dECM microparticle can be developed as a platform for macromolecule delivery. Together, the results suggest that dECM microparticles can be developed as a modular therapy for heart injury.


Assuntos
Matriz Extracelular , Traumatismos Cardíacos , Animais , Materiais Biocompatíveis/metabolismo , Materiais Biocompatíveis/farmacologia , Matriz Extracelular/metabolismo , Traumatismos Cardíacos/metabolismo , Hidrogéis/metabolismo , Camundongos , Regeneração , Suínos , Engenharia Tecidual/métodos
15.
ACS Appl Mater Interfaces ; 14(4): 4899-4913, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35060707

RESUMO

Despite advances in the development of complex culture technologies, the utility, survival, and function of large 3D cell aggregates, or spheroids, are impeded by mass transport limitations. The incorporation of engineered microparticles into these cell aggregates offers a promising approach to increase spheroid integrity through the creation of extracellular spaces to improve mass transport. In this study, we describe the formation of uniform oxygenating fluorinated methacrylamide chitosan (MACF) microparticles via a T-shaped microfluidic device, which when incorporated into spheroids increased extracellular spacing and enhanced oxygen transport via perfluorocarbon substitutions. The addition of MACF microparticles into large liver cell spheroids supported the formation of stable and large spheroids (>500 µm in diameter) made of a heterogeneous population of immortalized human hepatoma (HepG2) and hepatic stellate cells (HSCs) (4 HepG2/1 HSC), especially at a 150:1 ratio of cells to microparticles. Further, as confirmed by the albumin, urea, and CYP3A4 secretion amounts into the culture media, biological functionality was maintained over 10 days due to the incorporation of MACF microparticles as compared to controls without microparticles. Importantly, we demonstrated the utility of fluorinated microparticles in reducing the number of hypoxic cells within the core regions of spheroids, while also promoting the diffusion of other small molecules in and out of these 3D in vitro models.


Assuntos
Acrilamidas/farmacologia , Materiais Biocompatíveis/farmacologia , Quitosana/farmacologia , Oxigênio/metabolismo , Esferoides Celulares/efeitos dos fármacos , Acrilamidas/química , Acrilamidas/metabolismo , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Quitosana/química , Quitosana/metabolismo , Halogenação , Humanos , Teste de Materiais , Oxigênio/química , Tamanho da Partícula , Esferoides Celulares/metabolismo , Propriedades de Superfície
16.
Food Chem ; 335: 127651, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-32739817

RESUMO

We establish the total amino acids (AA) concentration in wash water as an alternative indicator of free chlorine (FC) levels, and develop a model to predict FC concentration based on modeling the reaction kinetics of chlorine and amino acids. Using single wash of iceberg lettuce, green cabbage, and carrots, we report the first in situ apparent reaction rate ß between FC and amino acids in the range of 15.3 - 16.6 M-1 s-1 and an amplification factor γ in the range of 11.52-11.94 for these produce. We also report strong linear correlations between AA levels and produce-to-water ratio (R2 = 0.87), and between chemical oxygen demand (COD) and AA concentrations (R2 = 0.87). The values of the parameters γ and ß of the model were validated in continuous wash experiments of chopped iceberg lettuce, and predicted the FC (R2 = 0.96) and AA (R2 = 0.92) levels very well.


Assuntos
Aminoácidos/análise , Brassica/química , Cloro/análise , Daucus carota/química , Desinfetantes/análise , Manipulação de Alimentos/instrumentação , Lactuca/química , Contaminação de Alimentos/análise , Manipulação de Alimentos/métodos , Microbiologia de Alimentos
17.
Int J Food Microbiol ; 356: 109364, 2021 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-34418698

RESUMO

Inactivation rate constant or inactivation coefficient (specific lethality) quantifies the rate at which a chemical sanitizer inactivates a microorganism. This study presents a modified disinfection kinetics model to evaluate the potential effect of organic content on the chlorine inactivation coefficient of Escherichia coli O157:H7 in fresh produce wash processes. Results show a significant decrease in the bactericidal efficacy of free chlorine (FC) in the presence of organic load compared to its absence. While the chlorine inactivation coefficient of Escherichia coli O157:H7 is 70.39 ± 3.19 L/mg/min in the absence of organic content, it drops by 73% for a chemical oxygen demand (COD) level of 600-800 mg/L. Results also indicate that the initial chlorine concentration and bacterial load have no effect on the chlorine inactivation coefficient. A second-order chemical reaction model for FC decay, which utilizes a proportion of COD as an indicator of organic content in fresh produce wash was employed, yielding an apparent reaction rate of (9.45 ± 0.22) × 10-4 /µM/min. This model was validated by predicting FC concentration in multi-run continuous wash cycles with periodic replenishment of chlorine.


Assuntos
Cloro , Escherichia coli O157 , Manipulação de Alimentos , Microbiologia de Alimentos , Viabilidade Microbiana , Modelos Biológicos , Cloro/farmacologia , Contagem de Colônia Microbiana , Desinfetantes/farmacologia , Escherichia coli O157/efeitos dos fármacos , Manipulação de Alimentos/métodos , Microbiologia de Alimentos/métodos
18.
Micromachines (Basel) ; 11(1)2020 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-31947897

RESUMO

Computational fluid dynamics modeling at Reynolds numbers ranging from 10 to 100 was used to characterize the performance of a new type of micromixer employing a serpentine channel with a grooved surface. The new topology exploits the overlap between the typical Dean flows present in curved channels due to the centrifugal forces experienced by the fluids, and the helical flows induced by slanted groove-ridge patterns with respect to the direction of the flow. The resulting flows are complex, with multiple vortices and saddle points, leading to enhanced mixing across the section of the channel. The optimization of the mixers with respect to the inner radius of curvature (Rin) of the serpentine channel identifies the designs in which the mixing index quality is both high (M > 0.95) and independent of the Reynolds number across all the values investigated.

19.
J Mater Chem B ; 8(40): 9239-9250, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-32966543

RESUMO

Elastogenesis is a complex process beginning with transcription, translation, and extracellular release of precursor proteins leading to crosslinking, deposition, and assembly of ubiquitous elastic fibers. While the biochemical pathways by which elastic fibers are assembled are known, the biophysical forces mediating the interactions between the constituent proteins are unknown. Using atomic force microscopy, we quantified the adhesive forces among the elastic fiber components, primarily between tropoelastin, elastin binding protein (EBP), fibrillin-1, fibulin-5, and lysyl oxidase-like 2 (LOXL2). The adhesive forces between tropoelastin and other tissue-derived proteins such as insoluble elastin, laminin, and type I collagens were also assessed. The adhesive forces between tropoelastin and laminin were strong (1767 ± 126 pN; p < 10-5vs. all others), followed by forces (≥200 pN) between tropoelastin and human collagen, mature elastin, or tropoelastin. The adhesive forces between tropoelastin and rat collagen, EBP, fibrillin-1, fibulin-5, and LOXL2 coated on fibrillin-1 were in the range of 100-200 pN. The forces between tropoelastin and LOXL2, LOXL2 and fibrillin-1, LOXL2 and fibulin-5, and fibrillin-1 and fibulin-5 were less than 100 pN. Introducing LOXL2 decreased the adhesive forces between the tropoelastin monomers by ∼100 pN. The retraction phase of force-deflection curves was fitted to the worm-like chain model to calculate the rigidity and flexibility of these proteins as they unfolded. The results provided insights into how each constituent's stretching under deformation contributes to structural and mechanical characteristics of these fibers and to elastic fiber assembly.


Assuntos
Aminoácido Oxirredutases/metabolismo , Tecido Elástico/química , Proteínas da Matriz Extracelular/metabolismo , Fibrilina-1/metabolismo , Receptores de Superfície Celular/metabolismo , Tropoelastina/metabolismo , Aminoácido Oxirredutases/química , Animais , Proteínas da Matriz Extracelular/química , Fibrilina-1/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Modelos Químicos , Ligação Proteica , Ratos , Receptores de Superfície Celular/química , Tropoelastina/química
20.
J Mech Behav Biomed Mater ; 110: 103953, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32957245

RESUMO

Regeneration following spinal cord injury (SCI) is challenging in part due to the modified tissue composition and organization of the resulting glial and fibrotic scar regions. Inhibitory cell types and biochemical cues present in the scar have received attention as therapeutic targets to promote regeneration. However, altered Young's modulus of the scar as a readout for potential impeding factors for regeneration are not as well-defined, especially in vivo. Although the decreased Young's modulus of surrounding tissue at acute stages post-injury is known, the causation and outcomes at chronic time points remain largely understudied and controversial, which motivates this work. This study assessed the glial and fibrotic scar tissue's Young's modulus and composition (scar morphometry, cell identity, extracellular matrix (ECM) makeup) that contribute to the tissue's stiffness. The spatial Young's modulus of a chronic (~18-wks, post-injury) hemi-section, including the glial and fibrotic regions, were significantly less than naïve tissue (~200 Pa; p < 0.0001). The chronic scar contained cystic cavities dispersed in areas of dense nuclei packing. Abundant CNS cell types such as astrocytes, oligodendrocytes, and neurons were dysregulated in the scar, while epithelial markers such as vimentin were upregulated. The key ECM components in the CNS, namely sulfated proteoglycans (sPGs), were significantly downregulated following injury with concomitant upregulation of unsulfated glycosaminoglycans (GAGs) and hyaluronic acid (HA), likely altering the foundational ECM network that contributes to tissue stiffness. Our results reveal the Young's modulus of the chronic SCI scar as well as quantification of contributing elastic components that can provide a foundation for future study into their role in tissue repair and regeneration.


Assuntos
Cicatriz , Traumatismos da Medula Espinal , Astrócitos/patologia , Cicatriz/patologia , Matriz Extracelular/patologia , Humanos , Neuroglia , Medula Espinal , Traumatismos da Medula Espinal/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA