RESUMO
Eosinophilic esophagitis (EoE) is a rare atopic disorder associated with esophageal dysfunction, including difficulty swallowing, food impaction, and inflammation, that develops in a small subset of people with food allergies. Genome-wide association studies (GWASs) have identified 9 independent EoE risk loci reaching genome-wide significance (p < 5 × 10-8) and 27 additional loci of suggestive significance (5 × 10-8 < p < 1 × 10-5). In the current study, we perform linkage disequilibrium (LD) expansion of these loci to nominate a set of 531 variants that are potentially causal. To systematically interrogate the gene regulatory activity of these variants, we designed a massively parallel reporter assay (MPRA) containing the alleles of each variant within their genomic sequence context cloned into a GFP reporter library. Analysis of reporter gene expression in TE-7, HaCaT, and Jurkat cells revealed cell-type-specific gene regulation. We identify 32 allelic enhancer variants, representing 6 genome-wide significant EoE loci and 7 suggestive EoE loci, that regulate reporter gene expression in a genotype-dependent manner in at least one cellular context. By annotating these variants with expression quantitative trait loci (eQTL) and chromatin looping data in related tissues and cell types, we identify putative target genes affected by genetic variation in individuals with EoE. Transcription factor enrichment analyses reveal possible roles for cell-type-specific regulators, including GATA3. Our approach reduces the large set of EoE-associated variants to a set of 32 with allelic regulatory activity, providing functional insights into the effects of genetic variation in this disease.
Assuntos
Enterite , Eosinofilia , Esofagite Eosinofílica , Gastrite , Humanos , Esofagite Eosinofílica/genética , Esofagite Eosinofílica/complicações , Estudo de Associação Genômica Ampla , Genótipo , Locos de Características Quantitativas/genéticaRESUMO
Atopic dermatitis (AD) is one of the most common skin disorders among children. Disease etiology involves genetic and environmental factors, with 29 independent AD risk loci enriched for risk allele-dependent gene expression in the skin and CD4+ T cell compartments. We investigated the potential epigenetic mechanisms responsible for the genetic susceptibility of CD4+ T cells. To understand the differences in gene regulatory activity in peripheral blood T cells in AD, we measured chromatin accessibility (an assay based on transposase-accessible chromatin sequencing, ATAC-seq), nuclear factor kappa B subunit 1 (NFKB1) binding (chromatin immunoprecipitation with sequencing, ChIP-seq), and gene expression levels (RNA-seq) in stimulated CD4+ T cells from subjects with active moderate-to-severe AD, as well as in age-matched non-allergic controls. Open chromatin regions in stimulated CD4+ T cells were highly enriched for AD genetic risk variants, with almost half of the AD risk loci overlapping AD-dependent ATAC-seq peaks. AD-specific open chromatin regions were strongly enriched for NF-κB DNA-binding motifs. ChIP-seq identified hundreds of NFKB1-occupied genomic loci that were AD- or control-specific. As expected, the AD-specific ChIP-seq peaks were strongly enriched for NF-κB DNA-binding motifs. Surprisingly, control-specific NFKB1 ChIP-seq peaks were not enriched for NFKB1 motifs, but instead contained motifs for other classes of human transcription factors, suggesting a mechanism involving altered indirect NFKB1 binding. Using DNA sequencing data, we identified 63 instances of altered genotype-dependent chromatin accessibility at 36 AD risk variant loci (30% of AD risk loci) that might lead to genotype-dependent gene expression. Based on these findings, we propose that CD4+ T cells respond to stimulation in an AD-specific manner, resulting in disease- and genotype-dependent chromatin accessibility alterations involving NFKB1 binding.
Assuntos
Linfócitos T CD4-Positivos , Dermatite Atópica , Linfócitos T CD4-Positivos/metabolismo , Criança , Cromatina/genética , DNA , Dermatite Atópica/genética , Epigênese Genética , Humanos , NF-kappa B/metabolismoRESUMO
BACKGROUND: There are two major genetic types of Epstein-Barr Virus (EBV): type 1 (EBV-1) and type 2 (EBV-2). EBV functions by manipulating gene expression in host B cells, using virus-encoded gene regulatory proteins including Epstein-Barr Nuclear Antigen 2 (EBNA2). While type 1 EBNA2 is known to interact with human transcription factors (hTFs) such as RBPJ, EBF1, and SPI1 (PU.1), type 2 EBNA2 shares only ~ 50% amino acid identity with type 1 and thus may have distinct binding partners, human genome binding locations, and functions. RESULTS: In this study, we examined genome-wide EBNA2 binding in EBV-1 and EBV-2 transformed human B cells to identify shared and unique EBNA2 interactions with the human genome, revealing thousands of type-specific EBNA2 ChIP-seq peaks. Computational predictions based on hTF motifs and subsequent ChIP-seq experiments revealed that both type 1 and 2 EBNA2 co-occupy the genome with SPI1 and AP-1 (BATF and JUNB) hTFs. However, type 1 EBNA2 showed preferential co-occupancy with EBF1, and type 2 EBNA2 preferred RBPJ. These differences in hTF co-occupancy revealed possible mechanisms underlying type-specific gene expression of known EBNA2 human target genes: MYC (shared), CXCR7 (type 1 specific), and CD21 (type 2 specific). Both type 1 and 2 EBNA2 binding events were enriched at systemic lupus erythematosus (SLE) and multiple sclerosis (MS) risk loci, while primary biliary cholangitis (PBC) risk loci were specifically enriched for type 2 peaks. CONCLUSIONS: This study reveals extensive type-specific EBNA2 interactions with the human genome, possible differences in EBNA2 interaction partners, and a possible new role for type 2 EBNA2 in autoimmune disorders. Our results highlight the importance of considering EBV type in the control of human gene expression and disease-related investigations.
Assuntos
Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Humanos , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/metabolismo , Genoma Humano , Antígenos Nucleares do Vírus Epstein-Barr/genética , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Proteínas Virais/genética , Fatores de Transcrição/metabolismoRESUMO
The interplay between environmental and genetic factors plays a key role in the development of many autoimmune diseases. In particular, the Epstein-Barr virus (EBV) is an established contributor to multiple sclerosis, lupus, and other disorders. Previously, we showed that the EBV nuclear antigen 2 (EBNA2) transactivating protein occupies up to half of the risk loci for a set of seven autoimmune disorders. To further examine the mechanistic roles played by EBNA2 at these loci on a genome-wide scale, we globally examined gene expression, chromatin accessibility, chromatin looping, and EBNA2 binding in a B cell line that was (1) uninfected, (2) infected with a strain of EBV lacking EBNA2, or (3) infected with a strain that expresses EBNA2. We identified more than 400 EBNA2-dependent differentially expressed human genes and more than 5000 EBNA2 binding events in the human genome. ATAC-seq analysis revealed more than 2000 regions in the human genome with EBNA2-dependent chromatin accessibility, and HiChIP data revealed more than 1700 regions where EBNA2 altered chromatin looping interactions. Autoimmune genetic risk loci were highly enriched at the sites of these EBNA2-dependent chromatin-altering events. We present examples of autoimmune risk genotype-dependent EBNA2 events, nominating genetic risk mechanisms for autoimmune risk loci such as ZMIZ1 Taken together, our results reveal important interactions between host genetic variation and EBNA2-driven disease mechanisms. Further, our study highlights a critical role for EBNA2 in rewiring human gene regulatory programs through rearrangement of the chromatin landscape and nominates these interactions as components of genetic mechanisms that influence the risk of multiple autoimmune diseases.
Assuntos
Imunoterapia Adotiva , Células Matadoras Naturais/imunologia , Pneumonia/terapia , COVID-19/complicações , COVID-19/terapia , COVID-19/virologia , Humanos , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Células Matadoras Naturais/metabolismo , Pneumonia/etiologia , SARS-CoV-2RESUMO
Transcription factors read the genome, fundamentally connecting DNA sequence to gene expression across diverse cell types. Determining how, where, and when TFs bind chromatin will advance our understanding of gene regulatory networks and cellular behavior. The 2017 ENCODE-DREAM in vivo Transcription-Factor Binding Site (TFBS) Prediction Challenge highlighted the value of chromatin accessibility data to TFBS prediction, establishing state-of-the-art methods for TFBS prediction from DNase-seq. However, the more recent Assay-for-Transposase-Accessible-Chromatin (ATAC)-seq has surpassed DNase-seq as the most widely-used chromatin accessibility profiling method. Furthermore, ATAC-seq is the only such technique available at single-cell resolution from standard commercial platforms. While ATAC-seq datasets grow exponentially, suboptimal motif scanning is unfortunately the most common method for TFBS prediction from ATAC-seq. To enable community access to state-of-the-art TFBS prediction from ATAC-seq, we (1) curated an extensive benchmark dataset (127 TFs) for ATAC-seq model training and (2) built "maxATAC", a suite of user-friendly, deep neural network models for genome-wide TFBS prediction from ATAC-seq in any cell type. With models available for 127 human TFs, maxATAC is the largest collection of high-performance TFBS prediction models for ATAC-seq. maxATAC performance extends to primary cells and single-cell ATAC-seq, enabling improved TFBS prediction in vivo. We demonstrate maxATAC's capabilities by identifying TFBS associated with allele-dependent chromatin accessibility at atopic dermatitis genetic risk loci.
Assuntos
Sequenciamento de Cromatina por Imunoprecipitação , Sequenciamento de Nucleotídeos em Larga Escala , Rede Nervosa , Humanos , Cromatina/genética , Desoxirribonucleases/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodosRESUMO
Runt-related transcription factor 1 (Runx1) can act as both an activator and a repressor. Here we show that CRISPR-mediated deletion of Runx1 in mouse metanephric mesenchyme-derived mK4 cells results in large-scale genome-wide changes to chromatin accessibility and gene expression. Open chromatin regions near down-regulated loci enriched for Runx sites in mK4 cells lose chromatin accessibility in Runx1 knockout cells, despite remaining Runx2-bound. Unexpectedly, regions near upregulated genes are depleted of Runx sites and are instead enriched for Zeb transcription factor binding sites. Re-expressing Zeb2 in Runx1 knockout cells restores suppression, and CRISPR mediated deletion of Zeb1 and Zeb2 phenocopies the gained expression and chromatin accessibility changes seen in Runx1KO due in part to subsequent activation of factors like Grhl2. These data confirm that Runx1 activity is uniquely needed to maintain open chromatin at many loci, and demonstrate that Zeb proteins are required and sufficient to maintain Runx1-dependent genome-scale repression.
Assuntos
Cromatina/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/fisiologia , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Regulação para Baixo , Camundongos , Camundongos Knockout , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismoRESUMO
The Consortium of Eosinophilic Gastrointestinal Diseases and The International Gastrointestinal Eosinophil Researchers organized a day-long symposium at the 2022 Annual Meeting of the American Academy of Allergy, Asthma & Immunology. The symposium featured a review of recent discoveries in the basic biology and pathogenesis of eosinophilic gastrointestinal diseases (EGIDs) in addition to advances in our understanding of the clinical features of EGIDs. Diagnostic and management approaches were reviewed and debated, and clinical trials of emerging therapies were highlighted. Herein, we briefly summarize the breakthrough discoveries in EGIDs.
Assuntos
Asma , Enterite , Eosinofilia , Esofagite Eosinofílica , Gastrite , Humanos , Estados Unidos , Enterite/diagnóstico , Enterite/terapia , Asma/diagnóstico , Asma/terapiaRESUMO
The molecular processes underlying human health and disease are highly complex. Often, genetic and environmental factors contribute to a given disease or phenotype in a non-additive manner, yielding a gene-environment (G × E) interaction. In this work, we broadly review current knowledge on the impact of gene-environment interactions on human health. We first explain the independent impact of genetic variation and the environment. We next detail well-established G × E interactions that impact human health involving environmental toxicants, pollution, viruses, and sex chromosome composition. We conclude with possibilities and challenges for studying G × E interactions.
Assuntos
Interação Gene-Ambiente , Humanos , FenótipoRESUMO
BACKGROUND: Preterm birth (PTB), defined as delivery before 37 gestational weeks, imposes significant public health burdens. A recent maternal genome-wide association study of spontaneous PTB identified a noncoding locus near the angiotensin II receptor type 2 (AGTR2) gene. Genotype-Tissue Expression data revealed that alleles associated with decreased AGTR2 expression in the uterus were linked to an increased risk of PTB and shortened gestational duration. We hypothesized that a causative variant in this locus modifies AGTR2 expression by altering transcription factor (TF) binding. METHODS: To investigate this hypothesis, we performed bioinformatics analyses and functional characterizations at the implicated locus. Potential causal single nucleotide polymorphisms (SNPs) were prioritized, and allele-dependent binding of TFs was predicted. Reporter assays were employed to assess the enhancer activity of the top PTB-associated non-coding variant, rs7889204, and its impact on TF binding. RESULTS: Our analyses revealed that rs7889204, a top PTB-associated non-coding genetic variant is one of the strongest eQTLs for the AGTR2 gene in uterine tissue samples. We observed differential binding of CEBPB (CCAAT enhancer binding protein beta) and HOXA10 (homeobox A10) to the alleles of rs7889204. Reporter assays demonstrated decreased enhancer activity for the rs7889204 risk "C" allele. CONCLUSION: Collectively, these results demonstrate that decreased AGTR2 expression caused by reduced transcription factor binding increases the risk for PTB and suggest that enhancing AGTR2 activity may be a preventative measure in reducing PTB risk.
Assuntos
Nascimento Prematuro , Feminino , Humanos , Recém-Nascido , Nascimento Prematuro/genética , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único/genética , Fatores de Transcrição/genéticaRESUMO
BACKGROUND: Genetic variants in complement genes have been associated with a wide range of human disease states, but well-powered genetic association studies of complement activation have not been performed in large multiethnic cohorts. METHODS: We performed medical records-based genome-wide and phenome-wide association studies for plasma C3 and C4 levels among participants of the Electronic Medical Records and Genomics (eMERGE) network. RESULTS: In a GWAS for C3 levels in 3949 individuals, we detected two genome-wide significant loci: chr.1q31.3 (CFH locus; rs3753396-A; ß=0.20; 95% CI, 0.14 to 0.25; P=1.52x10-11) and chr.19p13.3 (C3 locus; rs11569470-G; ß=0.19; 95% CI, 0.13 to 0.24; P=1.29x10-8). These two loci explained approximately 2% of variance in C3 levels. GWAS for C4 levels involved 3998 individuals and revealed a genome-wide significant locus at chr.6p21.32 (C4 locus; rs3135353-C; ß=0.40; 95% CI, 0.34 to 0.45; P=4.58x10-35). This locus explained approximately 13% of variance in C4 levels. The multiallelic copy number variant analysis defined two structural genomic C4 variants with large effect on blood C4 levels: C4-BS (ß=-0.36; 95% CI, -0.42 to -0.30; P=2.98x10-22) and C4-AL-BS (ß=0.25; 95% CI, 0.21 to 0.29; P=8.11x10-23). Overall, C4 levels were strongly correlated with copy numbers of C4A and C4B genes. In comprehensive phenome-wide association studies involving 102,138 eMERGE participants, we cataloged a full spectrum of autoimmune, cardiometabolic, and kidney diseases genetically related to systemic complement activation. CONCLUSIONS: We discovered genetic determinants of plasma C3 and C4 levels using eMERGE genomic data linked to electronic medical records. Genetic variants regulating C3 and C4 levels have large effects and multiple clinical correlations across the spectrum of complement-related diseases in humans.
Assuntos
Complemento C3/genética , Complemento C3/metabolismo , Complemento C4/genética , Complemento C4/metabolismo , Variação Genética , Prontuários Médicos , Adulto , Idoso , Alelos , Ativação do Complemento/genética , Bases de Dados Genéticas , Estudos Epidemiológicos , Feminino , Dosagem de Genes , Loci Gênicos , Estudo de Associação Genômica Ampla , Humanos , Masculino , Registro Médico Coordenado , Pessoa de Meia-Idade , Adulto JovemRESUMO
BACKGROUND: Eosinophilic esophagitis (EoE) is a chronic, food antigen-mediated disease characterized by esophageal dysfunction and intraepithelial eosinophil accumulation. OBJECTIVE: We hypothesized that very early onset EoE (V-EoE) would be enriched for early-life and genetic factors and have worse presentation and prognosis than later-onset pediatric EoE (L-EoE). METHODS: We conducted a single-site, retrospective review comparing patients diagnosed at age 12 months or less (V-EoE, n = 57) and age 14 to 18 years (L-EoE, n = 70). These patients underwent medical record, EoE Histology Scoring System, Endoscopic Reference Score, and EoE Diagnostic Panel assessment when sample availability permitted. Genetic association used 2 EoE genotype repositories. Data were analyzed using chi-square tests, t tests, Wilcoxon rank-sum tests, Spearman correlations, cluster analysis, and logistic regression. RESULTS: Among pediatric patients with EoE, diagnosis most commonly occurred within early life (0-24 months, 17%). V-EoE was more likely to attain histologic remission via dietary restriction (P < .0001). Basal zone hyperplasia and eosinophil inflammation were greater in V-EoE (P < .05). Esophageal strictures more commonly occurred in L-EoE (P = .03). V-EoE had lower endoscopic scores (P < .05). Molecular expression was very similar between groups. Cesarean delivery was more common in patients with V-EoE (P = .03). Patients with V-EoE demonstrated enrichment of CAPN14 common genetic variants. CONCLUSIONS: Early-life diagnosis of EoE is a common occurrence. V-EoE responds to standard therapy without early evidence for complications, suggesting a less severe prognosis than hypothesized. Molecular pathogenesis is preserved between V-EoE and L-EoE. Cesarean delivery and CAPN14 genetic variation likely promote earlier disease development.
Assuntos
Calpaína/genética , Esofagite Eosinofílica/genética , Variação Genética , Adolescente , Idade de Início , Calpaína/imunologia , Esofagite Eosinofílica/imunologia , Esofagite Eosinofílica/patologia , Feminino , Humanos , Masculino , Estudos RetrospectivosRESUMO
BACKGROUND: Eosinophilic esophagitis (EoE) is an emerging, chronic, rare allergic disease associated with marked eosinophil accumulation in the esophagus. Previous genome-wide association studies have provided strong evidence for 3 genome-wide susceptibility loci. OBJECTIVE: We sought to replicate known and suggestive EoE genetic risk loci and conduct a meta-analysis of previously reported data sets. METHODS: An EoE-Custom single-nucleotide polymophism (SNP) Chip containing 956 candidate EoE risk single-nucleotide polymorphisms was used to genotype 627 cases and 365 controls. Statistical power was enhanced by adding 1959 external controls and performing meta-analyses with 2 independent EoE genome-wide association studies. RESULTS: Meta-analysis identified replicated association and genome-wide significance at 6 loci: 2p23 (2 independent genetic effects) and 5q22, 10p14, 11q13, and 16p13. Seven additional loci were identified at suggestive significance (P < 10-6): 1q31, 5q23, 6q15, 6q21, 8p21, 17q12, and 22q13. From these risk loci, 13 protein-coding EoE candidate risk genes were expressed in a genotype-dependent manner. EoE risk genes were expressed in disease-relevant cell types, including esophageal epithelia, fibroblasts, and immune cells, with some expressed as a function of disease activity. The genetic risk burden of EoE-associated genetic variants was markedly larger in cases relative to controls (P < 10-38); individuals with the highest decile of genetic burden had greater than 12-fold risk of EoE compared with those within the lowest decile. CONCLUSIONS: This study extends the genetic underpinnings of EoE, highlighting 13 genes whose genotype-dependent expression expands our etiologic understanding of EoE and provides a framework for a polygenic risk score to be validated in future studies.
Assuntos
Esofagite Eosinofílica/genética , Loci Gênicos , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Esofagite Eosinofílica/imunologia , Estudo de Associação Genômica Ampla , Humanos , Fatores de RiscoRESUMO
Large meta-analyses of rheumatoid arthritis (RA) susceptibility in European (EUR) and East Asian (EAS) populations have identified >100 RA risk loci, but genome-wide studies of RA in African-Americans (AAs) are absent. To address this disparity, we performed an analysis of 916 AA RA patients and 1392 controls and aggregated our data with genotyping data from >100 000 EUR and Asian RA patients and controls. We identified two novel risk loci that appear to be specific to AAs: GPC5 and RBFOX1 (PAA < 5 × 10-9). Most RA risk loci are shared across different ethnicities, but among discordant loci, we observed strong enrichment of variants having large effect sizes. We found strong evidence of effect concordance for only 3 of the 21 largest effect index variants in EURs. We used the trans-ethnic fine-mapping algorithm PAINTOR3 to prioritize risk variants in >90 RA risk loci. Addition of AA data to those of EUR and EAS descent enabled identification of seven novel high-confidence candidate pathogenic variants (defined by posterior probability > 0.8). In summary, our trans-ethnic analyses are the first to include AAs, identified several new RA risk loci and point to candidate pathogenic variants that may underlie this common autoimmune disease. These findings may lead to better ways to diagnose or stratify treatment approaches in RA.
Assuntos
Artrite Reumatoide/epidemiologia , Artrite Reumatoide/genética , Negro ou Afro-Americano/genética , Predisposição Genética para Doença , Idoso , Etnicidade/genética , Feminino , Ligação Genética , Loci Gênicos , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo ÚnicoRESUMO
Eosinophilic esophagitis (EoE) is a chronic allergic disease associated with marked mucosal eosinophil accumulation. Multiple studies have reported a strong familial component to EoE, with the presence of EoE increasing the risk for other family members with EoE. Epidemiologic studies support an important role for environmental risk factors as modulators of genetic risk. In a small percentage of cases, including patients who have Mendelian diseases with co-occurrent EoE, rare genetic variation with large effect sizes could mediate EoE and explain multigenerational incidence in families. Common genetic risk variants mediate genetic risk for the majority of patients with EoE. Across the 31 reported independent EoE risk loci (P < 10-5), most of the EoE risk variants are located in between genes (36.7%) or within the introns of genes (42.4%). Although some variants do change the amino acid sequence of genes (2.2%), only 3 of the 31 EoE risk loci harbor an amino acid-changing variant. Thus most EoE risk loci are outside of the coding regions of genes, suggesting a key role for gene regulation in patients with EoE, which is consistent with most other complex diseases.
Assuntos
Esofagite Eosinofílica/genética , Loci Gênicos , Predisposição Genética para Doença , Esofagite Eosinofílica/epidemiologia , Esofagite Eosinofílica/imunologia , Humanos , Fatores de RiscoRESUMO
BACKGROUND: Despite evidence that genetic factors contribute to the duration of gestation and the risk of preterm birth, robust associations with genetic variants have not been identified. We used large data sets that included the gestational duration to determine possible genetic associations. METHODS: We performed a genomewide association study in a discovery set of samples obtained from 43,568 women of European ancestry using gestational duration as a continuous trait and term or preterm (<37 weeks) birth as a dichotomous outcome. We used samples from three Nordic data sets (involving a total of 8643 women) to test for replication of genomic loci that had significant genomewide association (P<5.0×10-8) or an association with suggestive significance (P<1.0×10-6) in the discovery set. RESULTS: In the discovery and replication data sets, four loci (EBF1, EEFSEC, AGTR2, and WNT4) were significantly associated with gestational duration. Functional analysis showed that an implicated variant in WNT4 alters the binding of the estrogen receptor. The association between variants in ADCY5 and RAP2C and gestational duration had suggestive significance in the discovery set and significant evidence of association in the replication sets; these variants also showed genomewide significance in a joint analysis. Common variants in EBF1, EEFSEC, and AGTR2 showed association with preterm birth with genomewide significance. An analysis of mother-infant dyads suggested that these variants act at the level of the maternal genome. CONCLUSIONS: In this genomewide association study, we found that variants at the EBF1, EEFSEC, AGTR2, WNT4, ADCY5, and RAP2C loci were associated with gestational duration and variants at the EBF1, EEFSEC, and AGTR2 loci with preterm birth. Previously established roles of these genes in uterine development, maternal nutrition, and vascular control support their mechanistic involvement. (Funded by the March of Dimes and others.).
Assuntos
Predisposição Genética para Doença , Variação Genética , Idade Gestacional , Fatores de Alongamento de Peptídeos/genética , Nascimento Prematuro/genética , Receptor Tipo 2 de Angiotensina/genética , Transativadores/genética , Adenilil Ciclases/genética , Conjuntos de Dados como Assunto , Feminino , Estudo de Associação Genômica Ampla , Humanos , Fenótipo , Polimorfismo de Nucleotídeo Único , Gravidez , Análise de Regressão , Proteína Wnt4/genética , Proteínas ras/genéticaRESUMO
Eosinophilic esophagitis (EoE) is a chronic inflammatory disease of the esophagus triggered by immune hypersensitivity to food. Herein, we tested whether genetic risk factors for known, non-allergic, immune-mediated diseases, particularly those involving autoimmunity, were associated with EoE risk. We used the high-density Immunochip platform, encoding 200,000 genetic variants for major auto-immune disease. Accordingly, 1214 subjects with EoE of European ancestry and 3734 population controls were genotyped and assessed using data directly generated or imputed from the previously published GWAS. We found lack of association of EoE with the genetic variants in the major histocompatibility complex (MHC) class I, II, and III genes and nearly all other loci using a highly powered study design with dense genotyping throughout the locus. Importantly, we identified an EoE risk locus at 16p13 with genome-wide significance (Pcombined=2.05 × 10-9, odds ratio = 0.76-0.81). This region is known to encode for the genes CLEC16A, DEXI, and CIITI, which are expressed in immune cells and esophageal epithelial cells. Suggestive EoE risk were also seen 5q23 (intergenic) and 7p15 (JAZF1). Overall, we have identified an additional EoE risk locus at 16p13 and highlight a shared and unique genetic etiology of EoE with a spectrum of immune-associated diseases.
Assuntos
Cromossomos Humanos Par 16/genética , Esofagite Eosinofílica/genética , Loci Gênicos , Polimorfismo Genético , Proteínas de Ligação a DNA/genética , Humanos , Lectinas Tipo C/genética , Proteínas de Membrana/genética , Proteínas de Transporte de Monossacarídeos/genética , Proteínas Nucleares/genética , Transativadores/genéticaRESUMO
BACKGROUND: Eosinophilic esophagitis (EoE) is an esophageal inflammatory disease associated with atopic diseases. Thymic stromal lymphopoietin (TSLP) and calpain 14 (CAPN14) genetic variations contribute to EoE, but how this relates to atopy is unclear. OBJECTIVE: The purpose of this study was to explore the relationship between EoE, atopy, and genetic risk. METHODS: EoE-atopy enrichment was tested by using 700 patients with EoE and 801 community control subjects. Probing 372 single nucleotide polymorphisms (SNPs) in 63 atopy genes, we evaluated EoE associations using 412 nonatopic and 868 atopic disease control subjects. Interaction and stratified analyses of EoE-specific and atopy-related SNPs were performed. RESULTS: Atopic disease was enriched in patients with EoE (P < .0001). Comparing patients with EoE and nonatopic control subjects, EoE associated strongly with IL-4/kinesin family member 3A (IL4/KIF3A) (P = 2.8 × 10-6; odds ratio [OR], 1.87), moderately with TSLP (P = 1.5 × 10-4; OR, 1.43), and nominally with CAPN14 (P = .029; OR, 1.35). Comparing patients with EoE with atopic disease control subjects, EoE associated strongly with ST2 (P = 3.5 × 10-6; OR, 1.77) and nominally with IL4/KIF3A (P = .019; OR, 1.25); TSLP's association persisted (P = 4.7 × 10-5; OR, 1.37), and CAPN14's association strengthened (P = .0001; OR, 1.71). Notably, there was gene-gene interaction between TSLP and IL4 SNPs (P = .0074). Children with risk alleles for both genes were at higher risk for EoE (P = 2.0 × 10-10; OR, 3.67). CONCLUSIONS: EoE genetic susceptibility is mediated by EoE-specific and general atopic disease loci, which can have synergistic effects. These results might aid in identifying potential therapeutics and predicting EoE susceptibility.
Assuntos
Esofagite Eosinofílica/genética , Predisposição Genética para Doença/genética , Dermatopatias/genética , Criança , Estudos de Coortes , Esôfago/patologia , Feminino , Loci Gênicos/genética , Humanos , Interleucina-4/genética , Cinesinas/genética , MasculinoRESUMO
Genetic variants at chromosomal region 11q23.3, near the gene ETS1, have been associated with systemic lupus erythematosus (SLE), or lupus, in independent cohorts of Asian ancestry. Several recent studies have implicated ETS1 as a critical driver of immune cell function and differentiation, and mice deficient in ETS1 develop an SLE-like autoimmunity. We performed a fine-mapping study of 14,551 subjects from multi-ancestral cohorts by starting with genotyped variants and imputing to all common variants spanning ETS1. By constructing genetic models via frequentist and Bayesian association methods, we identified 16 variants that are statistically likely to be causal. We functionally assessed each of these variants on the basis of their likelihood of affecting transcription factor binding, miRNA binding, or chromatin state. Of the four variants that we experimentally examined, only rs6590330 differentially binds lysate from B cells. Using mass spectrometry, we found more binding of the transcription factor signal transducer and activator of transcription 1 (STAT1) to DNA near the risk allele of rs6590330 than near the non-risk allele. Immunoblot analysis and chromatin immunoprecipitation of pSTAT1 in B cells heterozygous for rs6590330 confirmed that the risk allele increased binding to the active form of STAT1. Analysis with expression quantitative trait loci indicated that the risk allele of rs6590330 is associated with decreased ETS1 expression in Han Chinese, but not other ancestral cohorts. We propose a model in which the risk allele of rs6590330 is associated with decreased ETS1 expression and increases SLE risk by enhancing the binding of pSTAT1.
Assuntos
Predisposição Genética para Doença , Lúpus Eritematoso Sistêmico/genética , Proteína Proto-Oncogênica c-ets-1/genética , Fator de Transcrição STAT1/genética , Alelos , Animais , Povo Asiático , Teorema de Bayes , Genótipo , Haplótipos , Humanos , Camundongos , Ligação Proteica , Proteína Proto-Oncogênica c-ets-1/metabolismo , Fator de Transcrição STAT1/metabolismoRESUMO
Systemic juvenile idiopathic arthritis (sJIA) is an often severe, potentially life-threatening childhood inflammatory disease, the pathophysiology of which is poorly understood. To determine whether genetic variation within the MHC locus on chromosome 6 influences sJIA susceptibility, we performed an association study of 982 children with sJIA and 8,010 healthy control subjects from nine countries. Using meta-analysis of directly observed and imputed SNP genotypes and imputed classic HLA types, we identified the MHC locus as a bona fide susceptibility locus with effects on sJIA risk that transcended geographically defined strata. The strongest sJIA-associated SNP, rs151043342 [P = 2.8 × 10(-17), odds ratio (OR) 2.6 (2.1, 3.3)], was part of a cluster of 482 sJIA-associated SNPs that spanned a 400-kb region and included the class II HLA region. Conditional analysis controlling for the effect of rs151043342 found that rs12722051 independently influenced sJIA risk [P = 1.0 × 10(-5), OR 0.7 (0.6, 0.8)]. Meta-analysis of imputed classic HLA-type associations in six study populations of Western European ancestry revealed that HLA-DRB1*11 and its defining amino acid residue, glutamate 58, were strongly associated with sJIA [P = 2.7 × 10(-16), OR 2.3 (1.9, 2.8)], as was the HLA-DRB1*11-HLA-DQA1*05-HLA-DQB1*03 haplotype [6.4 × 10(-17), OR 2.3 (1.9, 2.9)]. By examining the MHC locus in the largest collection of sJIA patients assembled to date, this study solidifies the relationship between the class II HLA region and sJIA, implicating adaptive immune molecules in the pathogenesis of sJIA.