Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
J Am Chem Soc ; 146(9): 5916-5926, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38380514

RESUMO

Investigation of charge transfer needs analytical tools that could reveal this phenomenon, and enables understanding of its effect at the molecular level. Here, we show how the combination of using gold nanoclusters (AuNCs) and different spectroscopic techniques could be employed to investigate the charge transfer of thiolated molecules on gold nanoparticles (AuNP@Mol). It was found that the charge transfer effect in the thiolated molecule could be affected by AuNCs, evidenced by the amplification of surface-enhanced Raman scattering (SERS) signal of the molecule and changes in fluorescence lifetime of AuNCs. Density functional theory (DFT) calculations further revealed that AuNCs could amplify the charge transfer process at the molecular level by pumping electrons to the surface of AuNPs. Finite element method (FEM) simulations also showed that the electromagnetic enhancement mechanism along with chemical enhancement determines the SERS improvement in the thiolated molecule. This study provides a mechanistic insight into the investigation of charge transfer at the molecular level between organic and inorganic compounds, which is of great importance in designing new nanocomposite systems. Additionally, this work demonstrates the potential of SERS as a powerful analytical tool that could be used in nanochemistry, material science, energy, and biomedical fields.

2.
Phys Chem Chem Phys ; 26(7): 6189-6195, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38305045

RESUMO

Magnetic skyrmions and their effective manipulations are promising for the design of next-generation information storage and processing devices, due to their topologically protected chiral spin textures and low energy cost. They, therefore, have attracted significant interest from the communities of condensed matter physics and materials science. Herein, based on density functional theory (DFT) calculations and micromagnetic simulations, we report the spontaneous 2 nm-diameter magnetic skyrmions in the monolayer CuCrP2Te6 originating from the synergistic effect of broken inversion symmetry and strong Dzyaloshinskii-Moriya interactions (DMIs). The creation and annihilation of magnetic skyrmions can be achieved via the ferroelectric to anti-ferroelectric (FE-to-AFE) transition, due to the variation of the magnetic parameter D2/|KJ|. Moreover, we also found that the DMIs and Heisenberg isotropic exchange can be manipulated by bi-axial strain, to effectively enhance skyrmion stability. Our findings provide feasible approaches to manipulate the skyrmions, which can be used for the design of next-generation information storage devices.

3.
Nano Lett ; 23(11): 5367-5372, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37232533

RESUMO

The layer Hall effect (LHE) is of fundamental and practical importance in condensed-matter physics and material science; however, it was rarely observed and usually based on the paradigms of persistent electric field and sliding ferroelectricity. Here, a new mechanism of LHE is proposed by coupling layer physics with multiferroics using symmetry analysis and a low-energy k·p model. Due to time-reversal symmetry breaking and valley physics, the Bloch electrons on one valley will be subject to a large Berry curvature. This combined with inversion symmetry breaking gives rise to layer-polarized Berry curvature and can force the electrons to deflect in one direction of a given layer, thereby generating the LHE. We demonstrate that the resulting LHE is ferroelectrically controllable and reversible. Using first-principles calculations, this mechanism and predicted phenomena are verified in the multiferroic material of bilayer Co2CF2. Our finding opens a new direction for LHE and 2D materials research.

4.
Nano Lett ; 23(23): 10922-10929, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-37965921

RESUMO

Despite its prevalence in experiments, the influence of complex strain on material properties remains understudied due to the lack of effective simulation methods. Here, the effects of bending, rippling, and bubbling on the ferroelectric domains are investigated in an In2Se3 monolayer by density functional theory and deep learning molecular dynamics simulations. Since the ferroelectric switching barrier can be increased (decreased) by tensile (compressive) strain, automatic polarization reversal occurs in α-In2Se3 with a strain gradient when it is subjected to bending, rippling, or bubbling deformations to create localized ferroelectric domains with varying sizes. The switching dynamics depends on the magnitude of curvature and temperature, following an Arrhenius-style relationship. This study not only provides a promising solution for cross-scale studies using deep learning but also reveals the potential to manipulate local polarization in ferroelectric materials through strain engineering.

5.
J Am Chem Soc ; 145(48): 26393-26402, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38010364

RESUMO

Photocatalytic and electrocatalytic reactions to produce value-added chemicals offer promising solutions for addressing the energy crisis and environmental pollution. Photocatalysis is driven by light excitation and charge separation and relies on semiconducting catalysts, while electrocatalysis is driven by external electric current and is mostly based on metallic catalysts with high electrical conductivity. Due to the distinct reaction mechanism, the conversion between the two catalytic types has remained largely unexplored. Herein, by means of density functional theory (DFT) simulations, we demonstrated that the ferroelectric heterostructures Mo-BN@In2Se3 and WSe2@In2Se3 can exhibit semiconducting or metallic features depending on the polarization direction as a result of the built-in field and electron transfer. Using the nitrogen reduction reaction (NRR) and hydrogen evolution reaction (HER) as examples, the metallic heterostructures act as excellent electrocatalysts for these reactions, while the semiconducting heterostructures serve as the corresponding photocatalysts with improved optical absorption, enhanced charge separation, and low Gibbs free energy change. The findings not only bridge physical phenomena of the electronic phase transition with chemical reactions but also offer a new and feasible approach to significantly improve the catalytic efficiency.

6.
J Am Chem Soc ; 145(9): 5523-5535, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36823736

RESUMO

Electrides are a unique class of electron-rich materials where excess electrons are localized in interstitial lattice sites as anions, leading to a range of unique properties and applications. While hundreds of electrides have been discovered in recent years, magnetic electrides have received limited attention, with few investigations into their fundamental physics and practical applications. In this work, 51 magnetic electrides (12 antiferromagnetic, 13 ferromagnetic, and 26 interstitial-magnetic) were identified using high-throughput computational screening methods and the latest Materials Project database. Based on their compositions, these magnetic electrides can be classified as magnetic semiconductors, metals, or half-metals, each with unique topological states and excellent catalytic performance for N2 fixation due to their low work functions and excess electrons. The novel properties of magnetic electrides suggest potential applications in spintronics, topological electronics, electron emission, and as high-performance catalysts. This work marks the beginning of a new era in the identification, investigation, and practical applications of magnetic electrides.

7.
Small ; 18(28): e2201770, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35694762

RESUMO

Higher-metal (HM) nitrides are a fascinating family of materials being increasingly researched due to their unique physical and chemical properties. However, few focus on investigating their application in a solar steam generation because the controllable and large-scale synthesis of these materials remains a significant challenge. Herein, it is reported that higher-metal molybdenum nitride nanosheets (HM-Mo5 N6 ) can be produced at the gram-scale using amine-functionalized MoS2 as precursor. The first-principles calculation confirms amine-functionalized MoS2 nanosheet effectively lengthens the bonds of MoS leading to a lower bond binding energy, promoting the formation of MoN bonds and production of HM-Mo5 N6 . Using this strategy, other HM nitride nanosheets, such as W2 N3 , Ta3 N5 , and Nb4 N5 , can also be synthesized. Specifically, under one simulated sunlight irradiation (1 kW m-2 ), the HM-Mo5 N6 nanosheets are heated to 80 °C within only ≈24 s (0.4 min), which is around 78 s faster than the MoS2 samples (102 s/1.7 min). More importantly, HM-Mo5 N6 nanosheets exhibit excellent solar evaporation rate (2.48 kg m-2  h-1 ) and efficiency (114.6%), which are 1.5 times higher than the solar devices of MoS2 /MF.

8.
Nano Lett ; 21(10): 4327-4334, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33989003

RESUMO

To ensure reliability and facilitate the strain engineering of zinc oxide (ZnO) nanowires (NWs), it is significant to understand their flexibility thoroughly. In this study, single-crystalline ZnO NWs with rich axial pyramidal I (π1) and prismatic stacking faults (SFs) are synthesized by a metal oxidation method. Bending properties of the as-synthesized ZnO NWs are investigated at the atomic scale using an in situ high-resolution transmission electron microscopy (HRTEM) technique. It is revealed that the SF-rich structures can foster multiple inelastic deformation mechanisms near room temperature, including active axial SFs' migration, deformation twinning and detwinning process in the NWs with growth π1 SFs, and prevalent nucleation and slip of perfect dislocations with a continuous increased bending strain, leading to tremendous bending strains up to 20% of the NWs. Our results record ultralarge bending deformations and provide insights into the deformation mechanisms of single-crystalline ZnO NWs with rich axial SFs.

9.
J Am Chem Soc ; 143(13): 5080-5090, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33759520

RESUMO

Membranes based on two-dimensional (2D) nanomaterials have shown great potential to alleviate the worldwide freshwater crisis due to their outstanding performance of freshwater extraction from saline water via ion rejection. However, it is still very challenging to achieve high selectivity and high permeance of water desalination through precise d-spacing control of 2D nanomaterial membranes within subnanometer. Here, we developed functionalized graphene oxide membranes (FGOMs) with nitrogen groups such as amine groups and polarized nitrogen atoms to enhance metal ion sieving by one-step controlled plasma processing. The nitrogen functionalities can produce strong electrostatic interactions with metal ions and result in a mono/divalent cation selectivity of FGOMs up to 90 and 28.3 in single and binary solution, which is over 10-fold than that of graphene oxide membranes (GOMs). First-principles calculation confirms that the ionic selectivity of FGOMs is induced by the difference of binding energies between metal ions and polarized nitrogen atoms. Besides, the ultrathin FGOMs with a thickness of 50 nm can possess a high water flux of up to 120 mol m-2 h-1 without sacrificing rejection rates of nearly 99.0% on NaCl solution, showing an ultrahigh water/salt selectivity of around 4.31 × 103. Such facile and efficient plasma processing not only endows the GOMs with a promising future sustainable water purification, including ion separation and water desalination, but also provides a new strategy to functionalize 2D nanomaterial membranes for specific purposes.

10.
Phys Chem Chem Phys ; 23(38): 21376-21384, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34614052

RESUMO

Two-dimensional (2D) ferroelectric materials are promising for use in high-performance nanoelectronic devices due to the non-volatility, high storage density, low energy cost and short response time originating from their bistable and switchable polarization states. In this mini review, we first discuss the mechanism and operation principles of ferroelectric devices to facilitate understanding of these novel nanoelectronics and then summarize the latest research progress of electronic devices based on 2D ferroelectrics. Finally, the perspectives for future research and development directions in various fields are provided. We expect this will provide an overview regarding the application of 2D ferroelectrics in electronic appliances.

11.
J Am Chem Soc ; 142(3): 1492-1500, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31888324

RESUMO

Photocatalytic water splitting is a promising technology to solve the energy crisis and provide renewable and clean energies. Recently, although numerous 2D materials have been proposed as the photocatalytic candidates, the strategies to effectively modulate photocatalytic reactions and conversion efficiency are still lacking. Herein, based on first-principles calculations, we show that the photocatalytic activities and energy conversion efficiency can be well tuned by ferroelectric-paraelectric phase transition of a AgBiP2Se6 monolayer. It is found that the AgBiP2Se6 monolayer has a higher potential and driving forces of photogenerated holes for water oxidation in the ferroelectric phase, but higher corresponding values of photogenerated electrons for the hydrogen reduction reaction in the paraelectric phase. Besides, the solar-to-hydrogen energy conversion efficiency is also tunable with the phase transition; it is up to 10.04% at the ferroelectric phase due to the better carrier utilization, but only 6.66% at the paraelectric phase. Moreover, the exciton binding energy is always smaller in the paraelectric state than that in the ferroelectric state, indicating that the ferroelectric switch could also make a directional adjustment to the photoexcited carrier separation. Our theoretical investigation not only reveals the importance of ferroelectric polarization on water splitting, but also opens an avenue to modify the photocatalytic properties of 2D ferroelectric materials via a ferroelectric switch.

12.
Nanotechnology ; 31(45): 455702, 2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-32808598

RESUMO

2D BCN material consisting of graphene and hexagonal boron nitride (h-BN) has received extensive attention due to its abundant electronic properties and promising applications. The actual applications of 2D BCN require that there be precise control over its electronic properties. Using density functional theory calculations, we systematically investigate the electronic structure and effective mass of 2D BCN under biaxial strain. It is demonstrated that the band gap of zigzag BCNs decreases monotonously as the tensile strain increases. Moreover, the system exhibits a similar trend, regardless of the C/h-BN ratio. In sharp contrast, the band gap of armchair BCNs depends on the C/h-BN ratio. Specifically, the band gap of C2(BN)4 decreases significantly, while the band gap of C3(BN)3 and C4(BN)2 initially remains almost unchanged and then increases with increasing biaxial strain in armchair BCNs. In addition, it is found that the effective masses of the electron and hole of BCNs can be effectively modulated by the biaxial strain. Our results suggest a new route to control the electronic properties of 2D BCN and may also facilitate the realization of electronic devices based on 2D BCN material.

13.
Nano Lett ; 19(2): 1227-1233, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30644755

RESUMO

Two-dimensional auxetic materials have attracted considerable attention due to their potential applications in medicine, tougher composites, defense, and so on. However, they are scare especially at low dimension, as auxetic materials are mainly realized in engineered materials and structures. Here, using first-principles calculations, we identify a compelling two-dimensional auxetic material, single-layer Ag2S, which possesses large negative Poisson's ratios in both in-plane and out-of-plane directions, but anisotropic ultralow Young's modulus. Such a coexistence of simultaneous negative Poisson's ratios in two directions is extremely rare, which is mainly originated from its particular zigzag-shaped buckling structure. In addition, contrary to the previously known metal-shrouded single-layer M2X (M = metal, X = nonmetal), single-layer Ag2S is the first nonmetal-shrouded M2X. Electronic calculations show that it is an indirect-gap semiconductor with gap value of 2.83 eV, and it can be turned to be direct with strain. These intriguing properties make single-layer Ag2S a promising auxetic material in electronics and mechanics.

14.
Phys Chem Chem Phys ; 21(2): 617-622, 2019 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-30540305

RESUMO

Two-dimensional (2D) Dirac materials have attracted extensive research interest due to their high carrier mobility and ballistic charge transport, and they hold great promise for next-generation nanoscale devices. Here, we report a computational discovery of a stable 2D Dirac material, an NiB6 monolayer, which is identified by an extensive structure search, and its dynamic and thermal stabilities are confirmed by phonon and ab initio molecular dynamics (AIMD) simulations. This monolayer structure possesses anisotropic elastic properties with a Young's modulus of 189 N m-1, which is higher than that of phosphorene or silicene. Electronic band calculations reveal a double Dirac cone feature near the Fermi level with a high Fermi velocity of 8.5 × 105 m s-1, and the results are robust against external strains. We also propose two possible synthesis approaches based on a stable Ni4B8+ precursor or by embedding Ni atoms into the δ4 boron framework. The present findings offer a strong physics basis for the design and synthesis of a novel 2D Dirac material.

15.
Phys Chem Chem Phys ; 21(33): 18316-18327, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31397455

RESUMO

Anti-oxidation is one of the significant properties of nickel-based superalloys useful for their potential applications in industry. However, previous research mainly focused on single-phase compounds of NiAl or Ni3Al. In the present study, first-principles density functional theory coupled with thermodynamics analysis are employed to investigate the atomistic oxidation behaviours of the Ni/Ni3Al composites systematically. An oxidation experiment with a DD6 alloy is conducted as well to further confirm the theoretical prediction. Initial surface formation energy analysis shows that the systems composed of Ni(111) and Ni3Al(100)/(111) surfaces are more stable and therefore are selected for further investigation. Thermodynamics calculations indicate that the Ni3Al phase is oxidized first, accompanied by Al-segregation on the top surfaces. This is followed by subsequent oxidation of the Ni phase. Surface oxidation diagrams with respect to the surface formation energies show that oxygen adsorption could enhance Al-segregation to the surface and Ni3Al(111) surfaces tend to be oxidized completely with slightly lower oxygen coverage. Oxidation at the interface is also investigated and the results show that oxygen atoms bind with the upper layers of the Ni3Al phase from the point of view of binding energy. The experimental results provide a reasonable explanation for the selective oxidation of Al atoms at the atomic-scale so as to form a dense anti-oxidation membrane. The present work could serve as a beneficial reference for subsequent investigations of oxidation or adsorption processes of two-phase composites.

16.
J Am Chem Soc ; 140(29): 9159-9166, 2018 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-29954177

RESUMO

Metal-organic frameworks (MOFs) combining the merits of both organic and inorganic functional building structures are fundamentally important and can meet the requirement of vast scientific and technological applications. Intrigued from the fact that transition metals (TMs) are widely embedded in the carbon sp2 network or strongly interact with a bare graphene edge, the single transition metal atom may work as a linker to connect carbon chains to build nanoarchitectures. A new MOF building structure, [Metal-Carbon-(Benzene) i-Chain] n ring abbreviated as [M-CB iC] n (M = Ti, V, and Cr), with increasing carbon chain length i (= 0, 1, 2, ···), was proposed as carbon chains CB iC connected by a single transition metal atom M to form a ring structure with multiedges n (= 2-6), based on advanced computational methods. They are thermodynamically stable and chemically and physically versatile with ring shape, electronic structures, optical response, as well as hydrogen adsorption energy that vary by changing the length of the carbon chain, the edge number of rings, or the type of connecting metal atoms. The optical response to incoming light of [M-CB iC] n rings can be adjustable to cover the entire visible solar spectrum range and exhibit a red shift by either increasing the edge number n or filling the d bands in connecting transition metals. In combination with their ideal adsorption energy of hydrogen atoms, |Δ GH*|, the proposed [M-CB iC] n building structure is attractive for photocatalytic or photoelectrochemical hydrogen evolution applications when they are extended in space to build up 1D, 2D, and 3D MOF frameworks.

17.
Nanotechnology ; 29(48): 484003, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30207548

RESUMO

Recently, two-dimensional (2D) transition-metal dichalcogenides (TMDCs) have attracted much attention due to their promising applications in the fields of electronics and optoelectronics. Controllable growth of TMDC heterostructures stimulates new interest by tuning their optical and electronic properties. Herein, large-scale lateral MoSe2-MoS2 and MoSe2(1-x)S2x -MoS2 heterostructures have been synthesized through one-step epitaxial ambient-pressure chemical vapor deposition method and we found that the growth time plays an important role in the formation of lateral heterostructures. Lateral MoSe2-MoS2 heterostructures have been systematically characterized by using atomic force microscopy, Raman spectroscopy and photoluminescence spectroscopy. Corresponding surface potential and charge distributions of MoSe2-MoS2 heterostructures have been investigated by employing Kelvin probe force microscopy. We found that the electrostatic properties of MoSe2-MoS2 heterostructures can be effectively tuned by injecting charges through conductive atomic force microscopy. Our results pave a new route for constructing 2D lateral heterostructures toward electronic and optoelectronic applications.

18.
Phys Chem Chem Phys ; 20(46): 28964-28978, 2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30426985

RESUMO

Two dimensional boron nanosheets have been proposed theoretically for a decade, but were not experimentally synthesized until very recently. Research into their fundamental properties and device applications has since seen exponential growth. In this perspective, we review recent research progress related to 2D boron sheets, touching upon the topics of fabrication, properties, and applications, as well as discussing challenges and future research directions. We highlight the intrinsic electronic and mechanical properties of boron sheets, resulting from their diverse structures. Their facile fabrication and novel properties have inspired the design and demonstration of new nanodevices; however, further progress relies on resolving technical obstructions, like non-scalable fabrication techniques. We also briefly describe some feasible schemes that can address the associated challenges. It is expected that this fascinating material will offer tremendous opportunities for research and development in the foreseeable future.

19.
Nano Lett ; 17(7): 4466-4472, 2017 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-28585828

RESUMO

Recently, two-dimensional (2D) transition-metal nitrides have triggered an enormous interest for their tunable mechanical, optoelectronic, and magnetic properties, significantly enriching the family of 2D materials. Here, by using a broad range of first-principles calculations, we report a systematic study of 2D rectangular materials of titanium mononitride (TiN), exhibiting high energetic and thermal stability due to in-plane d-p orbital hybridization and synergetic out-of-plane electronic delocalization. The rectangular TiN monolayer also possesses enhanced auxeticity and ferroelasticity with an alternating order of Possion's Ratios, stemming from the competitive interactions of intra- and inter- Ti-N chains. Such TiN nanosystem is a n-type metallic conductor with specific tunable pseudogaps. Halogenation of TiN monolayer downshifts the Fermi level, achieving the optical energy gap up to 1.85 eV for TiNCl(Br) sheet. Overall, observed electronic features suggest that the two materials are potential photocatalysts for water splitting application. These results extend emerging phenomena in a rich family 2D transition-metal-based materials and hint for a new platform for the next-generation functional nanomaterials.

20.
Phys Chem Chem Phys ; 19(33): 22502-22508, 2017 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-28809412

RESUMO

A recently synthesized InSe monolayer exhibits highly promising electronic and transport properties; it also possesses intricate intralayer atomic bonding configurations that are conducive to modulations of crystal and electronic structures. Here we identify by first-principles calculations two new structural phases of monolayer InSe distinct from the experimentally synthesized ß phase. The first, α phase, has the Se atom positions displaced relative to those in the ß phase, and exhibits outstanding electronic properties similar to those of the ß phase. The second, γ phase, has the In atom positions displaced, and displays exotic quantum spin Hall states in its electronic structure. Charging plays a crucial role in facilitating the transitions from the ß phase to the α or γ phase, and it is also essential for stabilizing the two new phases. Electron injection, alkali metal adsorption, and coupling to the Ag(111) substrate all provide the charging effect that considerably lowers the energies of the new phases and the kinetic barriers of the transition pathways. The charging effect is particularly pronounced in lowering the kinetic barrier for the ß-to-γ transition with a concomitant energy reduction stabilizing the γ phase that hosts Dirac cones in the electronic structure. The present results pave the way for further exploration and development of monolayer InSe as a versatile two-dimensional material for innovative device applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA