Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Nature ; 597(7874): 77-81, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34471275

RESUMO

The amount of carbon stored in deadwood is equivalent to about 8 per cent of the global forest carbon stocks1. The decomposition of deadwood is largely governed by climate2-5 with decomposer groups-such as microorganisms and insects-contributing to variations in the decomposition rates2,6,7. At the global scale, the contribution of insects to the decomposition of deadwood and carbon release remains poorly understood7. Here we present a field experiment of wood decomposition across 55 forest sites and 6 continents. We find that the deadwood decomposition rates increase with temperature, and the strongest temperature effect is found at high precipitation levels. Precipitation affects the decomposition rates negatively at low temperatures and positively at high temperatures. As a net effect-including the direct consumption by insects and indirect effects through interactions with microorganisms-insects accelerate the decomposition in tropical forests (3.9% median mass loss per year). In temperate and boreal forests, we find weak positive and negative effects with a median mass loss of 0.9 per cent and -0.1 per cent per year, respectively. Furthermore, we apply the experimentally derived decomposition function to a global map of deadwood carbon synthesized from empirical and remote-sensing data, obtaining an estimate of 10.9 ± 3.2 petagram of carbon per year released from deadwood globally, with 93 per cent originating from tropical forests. Globally, the net effect of insects may account for 29 per cent of the carbon flux from deadwood, which suggests a functional importance of insects in the decomposition of deadwood and the carbon cycle.


Assuntos
Ciclo do Carbono , Florestas , Insetos/metabolismo , Árvores/metabolismo , Animais , Sequestro de Carbono , Clima , Ecossistema , Mapeamento Geográfico , Cooperação Internacional
2.
Ecol Appl ; 27(2): 589-602, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27862547

RESUMO

Intensive forest management, together with fire suppression, have decreased structural complexity and altered dynamics of boreal forests profoundly. Such management threatens forest biodiversity and can reduce the provision of ecosystem services. Although the importance of ecosystem services is widely acknowledged, conservation strategies are hindered by poor knowledge about diversity patterns of service provider species as well as on mechanisms affecting these assemblages at different spatial and temporal scales. In this study, we assessed the effect of disturbance management on forest pollinator communities. To do so, we used a large-scale ecological experiment conducted in the year 2000, where forest complexity was manipulated with different harvest regimes and prescribed fire. Results were consistent with a positive response of pollinators to increasing habitat heterogeneity driven by past disturbances. Harvested sites harbored a diverse pollinator community, and showed higher spatial and temporal turnover in species richness. Conversely, old-growth forest communities were a nested subset of harvested sites and contained half of their total diversity. Variation in community composition (ß diversity) was primarily affected by species temporal turnover. Throughout the season, ß diversity was controlled by fire and harvesting legacies, which provide environmental heterogeneity in the form of flowering and nesting resources over space and time. Conservation strategies may undervalue ecosystem services in dynamic, naturally disturbance-driven, landscapes when relying solely on undisturbed forests areas. However, maintaining natural dynamics in early successional forests, by emulating natural disturbances at harvesting, hold promise for the conservation of both biodiversity and ecosystem services in boreal forests.


Assuntos
Biodiversidade , Incêndios , Agricultura Florestal/métodos , Florestas , Polinização , Conservação dos Recursos Naturais , Finlândia , Fenômenos Fisiológicos Vegetais , Taiga
3.
Glob Chang Biol ; 21(2): 637-51, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25044467

RESUMO

Conservation strategies are often established without consideration of the impact of climate change. However, this impact is expected to threaten species and ecosystem persistence and to have dramatic effects towards the end of the 21st century. Landscape suitability for species under climate change is determined by several interacting factors including dispersal and human land use. Designing effective conservation strategies at regional scales to improve landscape suitability requires measuring the vulnerabilities of specific regions to climate change and determining their conservation capacities. Although methods for defining vulnerability categories are available, methods for doing this in a systematic, cost-effective way have not been identified. Here, we use an ecosystem model to define the potential resilience of the Finnish forest landscape by relating its current conservation capacity to its vulnerability to climate change. In applying this framework, we take into account the responses to climate change of a broad range of red-listed species with different niche requirements. This framework allowed us to identify four categories in which representation in the landscape varies among three IPCC emission scenarios (B1, low; A1B, intermediate; A2, high emissions): (i) susceptible (B1 = 24.7%, A1B = 26.4%, A2 = 26.2%), the most intact forest landscapes vulnerable to climate change, requiring management for heterogeneity and resilience; (ii) resilient (B1 = 2.2%, A1B = 0.5%, A2 = 0.6%), intact areas with low vulnerability that represent potential climate refugia and require conservation capacity maintenance; (iii) resistant (B1 = 6.7%, A1B = 0.8%, A2 = 1.1%), landscapes with low current conservation capacity and low vulnerability that are suitable for restoration projects; (iv) sensitive (B1 = 66.4%, A1B = 72.3%, A2 = 72.0%), low conservation capacity landscapes that are vulnerable and for which alternative conservation measures are required depending on the intensity of climate change. Our results indicate that the Finnish landscape is likely to be dominated by a very high proportion of sensitive and susceptible forest patches, thereby increasing uncertainty for landscape managers in the choice of conservation strategies.


Assuntos
Biodiversidade , Mudança Climática , Conservação dos Recursos Naturais/métodos , Taiga , Árvores/fisiologia , Finlândia , Modelos Biológicos
4.
Ecology ; 101(12): e03183, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32892360

RESUMO

Changes in species diversity often result from species losses and gains. The dynamic nature of beta diversity (spatial variation in species composition) that derives from such temporal species turnover, however, has received relatively little attention. Here, we disentangled extinction and colonization components of beta diversity by using the sets of species that went locally extinct and that newly colonized the study sites. We applied this concept of extinction and colonization beta diversity to ground vegetation communities that have been repeatedly surveyed in forests where fire and harvesting were experimentally applied. We first found that fire and harvesting caused no effect on beta diversity 2 yr after the treatments. From this result, we might conclude that they did not alter the ways in which species assemble across space. However, when we analyzed the extinction and colonization beta diversity between pre-treatment and 2 yr after the treatments, both measures were found to be significantly lower in burned sites compared to unburned sites (i.e., the groups of excluded and newly colonized species both showed low beta diversity in the burned sites). These results indicate that the fire excluded similar subsets of species across space, making communities become more heterogeneous, but at the same time induced spatially uniform colonization of new species, causing communities to homogenize. Consequently, the effects of these two processes canceled each other out. The relative importance of extinction and colonization components per se also changed temporally after the treatments. Fire and harvesting showed synergetic negative impacts on extinction beta diversity between pre-treatment and 10 yr after the treatments. Overall, analyses using extinction and colonization beta diversity allowed us to detect nonrandom disassembly and reassembly dynamics in ground vegetation communities. Our results suggest that common practices of analyzing beta diversity at one point in time can mask significant variation driven by disturbance. Acknowledging the extinction-colonization dynamics behind beta diversity is essential for understanding the spatiotemporal organization of biodiversity.


Assuntos
Biodiversidade , Incêndios , Ecossistema , Florestas
5.
FEMS Microbiol Ecol ; 93(3)2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28073802

RESUMO

The interactions among saprotrophic fungal species, as well as their interactions with environmental factors, may have a major influence on wood decay and carbon release in ecosystems. We studied the effect that decomposer diversity (species richness and assemblage composition) has on wood decomposition when the climatic variables and substrate quality vary simultaneously. We used two temperatures (16 and 21°C) and two humidity levels (70% and 90%) with two wood qualities (wood from managed and old-growth forests) of Pinus sylvestris. In a 9-month experiment, the effects of fungal diversity were tested using four wood-decaying fungi (Antrodia xantha, Dichomitus squalens, Fomitopsis pinicola and Gloeophyllum protractum) at assemblage levels of one, two and four species. Wood quality and assemblage composition affected the influence of climatic factors on decomposition rates. Fungal assemblage composition was found to be more important than fungal species richness, indicating that species-specific fungal traits are of paramount importance in driving decomposition. We conclude that models containing fungal wood-decay species (and wood-based carbon) need to take into account species-specific and assemblage composition-specific properties to improve predictive capacity in regard to decomposition-related carbon dynamics.


Assuntos
Clima , Fungos/classificação , Consórcios Microbianos , Madeira/microbiologia , Basidiomycota/crescimento & desenvolvimento , Carbono/análise , Ecossistema , Florestas , Fungos/fisiologia , Especificidade da Espécie , Temperatura , Árvores
6.
Oecologia ; 93(1): 42-47, 1993 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28313772

RESUMO

Water-lily beetles prefer younger rather than older water-lily leaves as oviposition sites. By the time of hatching, however, young leaves have aged consieerably. Larval performance of the water-lily beetle was measured on different types of leaves of the yellow water-lily and compared with oviposition preference of females. The leaf types used in the experiments were categorized as (i) young, (ii) natal (medium-aged) and (iii) old. The natal leaves were the ones on which larvae from a particular egg-batch had hatched. There were two sets of experiments. First, larvae were raised from eggs to pupae on young and on old leaves. Second, the growth of the 1st-instar larvae was measured on young, natal, and old leaves. The development time from egg to pupa did not differ between young and old leaves, but larvae growing on young leaves attained a higher pupal weight. In the second experiment the 1st-instar larvae grew fastest on their natal leaves, but there was also variation in the growth rate of progeny from different egg-batches. Larval growth on young and old leaves did not differ significantly. Larvae tried to emigrate much less from natal than other types of leaves. Females tended to lay eggs on leaves where larval growth was fastest. It seems that medium-aged leaves are best for larval growth, but the leaf characteristics responsible for this remain unresolved.

7.
Oecologia ; 88(1): 48-54, 1991 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28312730

RESUMO

I followed the within-generation distribution of a chewing specialist herbivore, the water-lily beetle, on individually marked leaves of the yellow water-lily. Yellow water-lilies produced new leaves steadily throughout the growth season. Average leaf longevity was 3-4 weeks, much shorter than the developmental time of the beetle. The average egg-load of leaves was about 120. Leaf longevity was independent of egg density, but migration rate of the first instar larvae was density-dependent. Beetles occurred in every leaf, but consumed only a fraction (17%) of the available leaf area. However, this caused the leaf to lose its floating ability, so even this low rate of consumption made the leaf unavailable to herbivores. The herbivore population had to redistribute itself throughout the summer, escaping from the drowning leaves to fresh ones. No beetle could survive from egg to adult on a single leaf. The small-scale redistribution of the herbivore strongly affected the damage experienced by the host plant. In general, ability to redistribute depends on the dispersal ability of the herbivore, and thus migration ability may strongly affect the plant-herbivore interaction.

8.
Oecologia ; 89(2): 176-181, 1992 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28312871

RESUMO

Needle litterfall of a Scots pine was caught over 24 years (1962-1986) with litter-traps in a Scots pine stand in southeastern Finland. The age of the trees averaged 111 years in 1962. The stand was naturally recruited and only minor silvicultural treatments occurred during its history. Litterfall showed great year-to-year variation, the minimum being 18 g/m2 (in 1968) and maximum 213 g/m2 (in 1973). There was no overall trend in the amount of litterfall, and the age of the stand was thus not important in determining the needle fall. We used time domain time series analysis (ARIMA) and standard climatic data (temperature, precipitation) to investigate the relationship of litterfall to climatic factors. Mean July temperature was clearly correlated with needle litterfall. High temperature in July coincided with enhanced litterfall in the same and the next year. Litterfall enhanced litterfall in the same and the next year. Litterfall increased also after high temperatures during March-April, but only in the same year. In addition to these the litterfall had a 4-year self-dependency. This is approximately the same as the mean longevity of needles in the study area. Altogether the time series model we propose covers about 90% of the variance of the original time series.

9.
Oecologia ; 116(4): 482-488, 1998 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28307517

RESUMO

Predation by small mammals is thought to be one of the main regulators of outbreaking sawfly species. It has been suggested that predation may be lower in poor and dryish forests, and this is the reason why outbreaks often begin from this type of environment. We studied experimentally how fertility of the forest site affects cocoon predation experienced by two sawfly species, the common pine sawfly Diprion pini (Linnaeus) and the European pine sawfly Neodiprion sertifer (Geoffroy). We applied a fertilization treatment to selected pine-dominated barren forest sites in Finland, and 2-4 years later monitored predation on the sawfly cocoons in fertilized and control areas. The results did not support the idea that forest fertility was related to cocoon predation. We also could not verify that small mammal abundance was related to fertility of the forest. The most obvious pattern we observed was that the two sawfly species differed dramatically in predation experienced. N. sertifer has its cocoon phase in mid-summer and experienced only moderate predation (37%) whereas D. pini, with its cocoon phase in autumn, suffered from very heavy predation (96%). Our observations suggest that if predation is important in controlling the population dynamics of the species, its impact depends more on the sawfly species and season than on the fertility of the forest site.

10.
J Appl Ecol ; 51(6): 1669-1679, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25552747

RESUMO

Industrial forestry typically leads to a simplified forest structure and altered species composition. Retention of trees at harvest was introduced about 25 years ago to mitigate negative impacts on biodiversity, mainly from clearcutting, and is now widely practiced in boreal and temperate regions. Despite numerous studies on response of flora and fauna to retention, no comprehensive review has summarized its effects on biodiversity in comparison to clearcuts as well as un-harvested forests. Using a systematic review protocol, we completed a meta-analysis of 78 studies including 944 comparisons of biodiversity between retention cuts and either clearcuts or un-harvested forests, with the main objective of assessing whether retention forestry helps, at least in the short term, to moderate the negative effects of clearcutting on flora and fauna. Retention cuts supported higher richness and a greater abundance of forest species than clearcuts as well as higher richness and abundance of open-habitat species than un-harvested forests. For all species taken together (i.e. forest species, open-habitat species, generalist species and unclassified species), richness was higher in retention cuts than in clearcuts. Retention cuts had negative impacts on some species compared to un-harvested forest, indicating that certain forest-interior species may not survive in retention cuts. Similarly, retention cuts were less suitable for some open-habitat species compared with clearcuts. Positive effects of retention cuts on richness of forest species increased with proportion of retained trees and time since harvest, but there were not enough data to analyse possible threshold effects, that is, levels at which effects on biodiversity diminish. Spatial arrangement of the trees (aggregated vs. dispersed) had no effect on either forest species or open-habitat species, although limited data may have hindered our capacity to identify responses. Results for different comparisons were largely consistent among taxonomic groups for forest and open-habitat species, respectively. Synthesis and applications. Our meta-analysis provides support for wider use of retention forestry since it moderates negative harvesting impacts on biodiversity. Hence, it is a promising approach for integrating biodiversity conservation and production forestry, although identifying optimal solutions between these two goals may need further attention. Nevertheless, retention forestry will not substitute for conservation actions targeting certain highly specialized species associated with forest-interior or open-habitat conditions. Our meta-analysis provides support for wider use of retention forestry since it moderates negative harvesting impacts on biodiversity. Hence, it is a promising approach for integrating biodiversity conservation and production forestry, although identifying optimal solutions between these two goals may need further attention. Nevertheless, retention forestry will not substitute for conservation actions targeting certain highly specialized species associated with forest-interior or open-habitat conditions.

11.
Conserv Biol ; 20(6): 1711-9, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17181806

RESUMO

Habitat loss, fragmentation, and declining habitat quality have created an extinction debt in boreal forests, which could be partly reversed by deliberately improving the habitat quality in managed areas outside reserves. We studied the effects of green-tree retention and controlled burning on red-listed and rare, deadwood-dependent (saproxylic) beetles in a large-scale field experiment in eastern Finland. Our factorial study design included 24 sites dominated by Scots pine (Pinus sylvestris L.) and with three levels of green-tree retention (0, 10, and 50 m3/ha) and uncut controls. Twelve of the 24 sites were burned in 2001. We sampled beetles with 10 flight-intercept traps on each site during the years 2000-2002 (i.e., 1 pretreatment and 2 post-treatment years). A total sample of 153,449 individuals representing 1,160 beetle species yielded 2,107 specimens of 84 red-listed or rare saproxylic species. The richness of these species was higher on the burned than on the unburned sites, and higher levels of green-tree retention promoted species richness, but there were clear differences between the years. The richness of red-listed and rare saproxylic species increased in the first post-treatment year, evidently due to the treatments, continued to increase on the burned sites in the second post-treatment year, but decreased on the unburned sites. Our results showed that the living conditions of many red-listed and rare saproxylic species could be improved significantly with rather simple alterations to forest management methods. Controlled burning with high levels of green-tree retention creates resources for many saproxylic species, but increasing the levels of green-tree retention in unburned areas can also be beneficial.


Assuntos
Biodiversidade , Besouros/crescimento & desenvolvimento , Conservação dos Recursos Naturais/métodos , Incêndios , Árvores/crescimento & desenvolvimento , Animais , Besouros/classificação , Feminino , Finlândia , Masculino , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA