RESUMO
Fish have somehow colonized isolated water bodies all over the world without human assistance. It has long been speculated that these colonization events are assisted by waterbirds, transporting fish eggs attached to their feet and feathers, yet empirical support for this is lacking. Recently, it was suggested that endozoochory (i.e., internal transport within the gut) might play a more important role, but only highly resistant diapause eggs of killifish have been found to survive passage through waterbird guts. Here, we performed a controlled feeding experiment, where developing eggs of two cosmopolitan, invasive cyprinids (common carp, Prussian carp) were fed to captive mallards. Live embryos of both species were retrieved from fresh feces and survived beyond hatching. Our study identifies an overlooked dispersal mechanism in fish, providing evidence for bird-mediated dispersal ability of soft-membraned eggs undergoing active development. Only 0.2% of ingested eggs survived gut passage, yet, given the abundance, diet, and movements of ducks in nature, our results have major implications for biodiversity conservation and invasion dynamics in freshwater ecosystems.
Assuntos
Distribuição Animal , Carpas/embriologia , Patos/fisiologia , Água Doce , Espécies Introduzidas , Óvulo , Animais , Embrião não Mamífero , Desenvolvimento Embrionário , Fezes , Comportamento Alimentar , Feminino , MasculinoRESUMO
This review describes the various innovative approaches implemented for naringin extraction as well as the recent developments in the field. Naringin was assessed in terms of its structure, chemical composition, and potential food sources. How naringin works pharmacologically was discussed, including its potential as an anti-diabetic, anti-inflammatory, and hepatoprotective substance. Citrus flavonoids are crucial herbal additives that have a huge spectrum of organic activities. Naringin is a nutritional flavanone glycoside that has been shown to be effective in the treatment of a few chronic disorders associated with ageing. Citrus fruits contain a common flavone glycoside that has specific pharmacological and biological properties. Naringin, a flavone glycoside with a range of intriguing characteristics, is abundant in citrus fruits. Naringin has been shown to have a variety of biological, medicinal, and pharmacological effects. Naringin is hydrolyzed into rhamnose and prunin by the naringinase, which also possesses l-rhamnosidase activity. D-glucosidase subsequently catalyzes the hydrolysis of prunin into glucose and naringenin. Naringin is known for having anti-inflammatory, antioxidant, and tumor-fighting effects. Numerous test animals and cell lines have been used to correlate naringin exposure to asthma, hyperlipidemia, diabetes, cancer, hyperthyroidism, and osteoporosis. This study focused on the many documented actions of naringin in in-vitro and in-vivo experimental and preclinical investigations, as well as its prospective therapeutic advantages, utilizing the information that is presently accessible in the literature. In addition to its pharmacokinetic characteristics, naringin's structure, distribution, different extraction methods, and potential use in the cosmetic, food, pharmaceutical, and animal feed sectors were discussed.
Assuntos
Flavanonas , Flavonas , Animais , Flavanonas/química , Glicosídeos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêuticoRESUMO
Sappan wood (Caesalpinia sappan) is a tropical hardwood tree found in Southeast Asia. Sappan wood contains a water-soluble compound, which imparts a red color named brazilin. Sappan wood is utilized to produce dye for fabric and coloring agents for food and beverages, such as wine and meat. As a valuable medicinal plant, the tree is also known for its antioxidant, anti-inflammatory, and anticancer properties. It has been observed that sappan wood contains various bioactive compounds, including brazilin, brazilein, sappan chalcone, and protosappanin A. It has also been discovered that these substances have various health advantages; they lower inflammation, enhance blood circulation, and are anti-oxidative in nature. Sappan wood has been used as a medicine to address a range of illnesses, such as gastrointestinal problems, respiratory infections, and skin conditions. Studies have also suggested that sappan wood may have anticarcinogenic potential as it possesses cytotoxic activity against cancer cells. Based on this, the present review emphasized the different medicinal properties, the role of phytochemicals, their health benefits, and several food and nonfood applications of sappan wood. Overall, sappan wood has demonstrated promising medicinal properties and is an important resource in traditional medicine. The present review has explored the potential role of sappan wood as an essential source of bioactive compounds for drug development.
Assuntos
Caesalpinia , Chalcona , Antioxidantes/farmacologia , Bebidas , Corantes , CarneRESUMO
Poniol (Flacourtia jangomas) has beneficial health effects due to its high polyphenolic and good antioxidant activity content. This study aimed to encapsulate the Poniol fruit ethanolic extract to the sucrose matrix using the co-crystallization process and analyze the physicochemical properties of the co-crystalized product. The physicochemical property characterization of the sucrose co-crystallized with the Poniol extract (CC-PE) and the recrystallized sucrose (RC) samples was carried out through analyzing the total phenolic content (TPC), antioxidant activity, loading capacity, entrapment yield, bulk and traped densities, hygroscopicity, solubilization time, flowability, DSC, XRD, FTIR, and SEM. The result revealed that the CC-PE product had a good entrapment yield (76.38%) and could retain the TPC (29.25 mg GAE/100 g) and antioxidant properties (65.10%) even after the co-crystallization process. Compared to the RC sample, the results also showed that the CC-PE had relatively higher flowability and bulk density, lower hygroscopicity, and solubilization time, which are desirable properties for a powder product. The SEM analysis showed that the CC-PE sample has cavities or pores in the sucrose cubic crystals, which proposed that the entrapment was better. The XRD, DSC, and FTIR analyses also showed no changes in the sucrose crystal structure, thermal properties, and functional group bonding structure, respectively. From the results, we can conclude that co-crystallization increased sucrose's functional properties, and the co-crystallized product can be used as a carrier for phytochemical compounds. The CC-PE product with improved properties can also be utilized to develop nutraceuticals, functional foods, and pharmaceuticals.
Assuntos
Antioxidantes , Frutas , Cristalização/métodos , Fenóis , Sacarose , Extratos Vegetais/químicaRESUMO
Today, integration into automated systems has become a priority in the development of remote sensing sensors carried on drones. For this purpose, the primary task is to achieve real-time data processing. Increasing sensor resolution, fast data capture and the simultaneous use of multiple sensors is one direction of development. However, this poses challenges on the data processing side due to the increasing amount of data. Our study intends to investigate how the running time and accuracy of commonly used image classification algorithms evolve using Altum Micasense multispectral and thermal acquisition data with GSD = 2 cm spatial resolution. The running times were examined for two PC configurations, with a 4 GB and 8 GB DRAM capacity, respectively, as these parameters are closer to the memory of NRT microcomputers and laptops, which can be applied "out of the lab". During the accuracy assessment, we compared the accuracy %, the Kappa index value and the area ratio of correct pixels. According to our results, in the case of plant cover, the Spectral Angles Mapper (SAM) method achieved the best accuracy among the validated classification solutions. In contrast, the Minimum Distance (MD) method achieved the best accuracy on water surface. In terms of temporality, the best results were obtained with the individually constructed decision tree classification. Thus, it is worth developing these two directions into real-time data processing solutions.
Assuntos
Algoritmos , TelemetriaRESUMO
The release of the FDA's guidance on Process Analytical Technology has motivated and supported the pharmaceutical industry to deliver consistent quality medicine by acquiring a deeper understanding of the product performance and process interplay. The technical opportunities to reach this high-level control have considerably evolved since 2004 due to the development of advanced analytical sensors and chemometric tools. However, their transfer to the highly regulated pharmaceutical sector has been limited. To this respect, data fusion strategies have been extensively applied in different sectors, such as food or chemical, to provide a more robust performance of the analytical platforms. This survey evaluates the challenges and opportunities of implementing data fusion within the PAT concept by identifying transfer opportunities from other sectors. Special attention is given to the data types available from pharmaceutical manufacturing and their compatibility with data fusion strategies. Furthermore, the integration into Pharma 4.0 is discussed.
Assuntos
Indústria Farmacêutica , Tecnologia Farmacêutica , Indústria Farmacêutica/organização & administração , Preparações Farmacêuticas/normas , Controle de Qualidade , Tecnologia Farmacêutica/métodos , Tecnologia Farmacêutica/organização & administração , Estados Unidos , United States Food and Drug AdministrationRESUMO
BACKGROUND: Citric acid, a commodity product of industrial biotechnology, is produced by fermentation of the filamentous fungus Aspergillus niger. A requirement for high-yield citric acid production is keeping the concentration of Mn2+ ions in the medium at or below 5 µg L-1. Understanding manganese metabolism in A. niger is therefore of critical importance to citric acid production. To this end, we investigated transport of Mn2+ ions in A. niger NRRL2270. RESULTS: we identified an A. niger gene (dmtA; NRRL3_07789), predicted to encode a transmembrane protein, with high sequence identity to the yeast manganese transporters Smf1p and Smf2p. Deletion of dmtA in A. niger eliminated the intake of Mn2+ at low (5 µg L-1) external Mn2+ concentration, and reduced the intake of Mn2+ at high (> 100 µg L-1) external Mn2+ concentration. Compared to the parent strain, overexpression of dmtA increased Mn2+ intake at both low and high external Mn2+ concentrations. Cultivation of the parent strain under Mn2+ ions limitation conditions (5 µg L-1) reduced germination and led to the formation of stubby, swollen hyphae that formed compact pellets. Deletion of dmtA caused defects in germination and hyphal morphology even in the presence of 100 µg L-1 Mn2+, while overexpression of dmtA led to enhanced germination and normal hyphal morphology at limiting Mn2+ concentration. Growth of both the parent and the deletion strains under citric acid producing conditions resulted in molar yields (Yp/s) of citric acid of > 0.8, although the deletion strain produced ~ 30% less biomass. This yield was reduced only by 20% in the presence of 100 µg L-1 Mn2+, whereas production by the parent strain was reduced by 60%. The Yp/s of the overexpressing strain was 17% of that of the parent strain, irrespective of the concentrations of external Mn2+. CONCLUSIONS: Our results demonstrate that dmtA is physiologically important in the transport of Mn2+ ions in A. niger, and manipulation of its expression modulates citric acid overflow.
Assuntos
Aspergillus niger/metabolismo , Ácido Cítrico/metabolismo , Proteínas Fúngicas/fisiologia , Manganês/metabolismo , Metiltransferases/fisiologia , Biotecnologia/métodos , Fermentação , Proteínas Fúngicas/genética , Mutação com Perda de Função , Metiltransferases/genéticaRESUMO
BACKGROUND: The standard, lifelong therapy of phenylketonuria (PKU) is a natural protein-restricted diet complemented with phenylalanine (Phe)-free L-amino acid mixtures that provide the daily necessary micronutrients. OBJECTIVE: To assess thyroid function and structure and the iodine status of early-treated adult PKU (ETPKU) patients in Hungary. METHODS: Sixty-nine PKU patients (aged 18-41 years) and 50 healthy controls were enrolled in the study. Thyroid hormones, serum thyroglobulin, thyroid antibodies, urinary iodine, and selenium concentrations were measured, and thyroid ultrasound was performed. RESULTS: The incidence of thyroid dysfunction was infrequent (n = 2). Blood Phe was negatively correlated with thyroid-stimulating hormone (TSH), and PKU patients had higher free thyroxine and lower TSH levels than healthy controls. Although optimal iodine status was found in the entire PKU population, by dividing the patients according to their therapy compliance, we observed that lower therapy adherence was associated with mild iodine deficiency and lower urinary selenium levels. CONCLUSIONS: The results of this study suggest that iodine status is strongly influenced by the adherence to therapy in ETPKU patients. No or not enough medical food consumption combined with a low-Phe diet can lead to subclinical iodine deficiency.
Assuntos
Iodo/deficiência , Cooperação do Paciente , Fenilcetonúrias/dietoterapia , Fenilcetonúrias/fisiopatologia , Glândula Tireoide/fisiopatologia , Adulto , Estudos de Casos e Controles , Dieta com Restrição de Proteínas , Feminino , Humanos , Hungria , Iodo/urina , Masculino , Fenilalanina/sangue , Estudos Prospectivos , Selênio/urina , Tireoglobulina/sangue , Glândula Tireoide/diagnóstico por imagem , Tireotropina/sangue , Tiroxina/sangue , Adulto JovemRESUMO
Cartilage and the bordering subchondral bone form a functionally active regulatory interface with a prominent role in osteoarthritis pathways. The Wnt and the OPG-RANKL-RANK signaling systems, as key mediators, interact in subchondral bone remodeling. Osteoarthritic osteoblasts polarize into two distinct phenotypes: a low secretory and an activated, pro-inflammatory and anti-resorptive subclass producing high quantities of IL-6, PGE2, and osteoprotegerin, but low levels of RANKL, thus acting as putative effectors of subchondral bone sclerosis. Wnt agonists, Wnt5a, Wisp-1 initiate excessive bone remodeling, while Wnt3a and 5a simultaneously cause loss of proteoglycans and phenotype shift in chondrocytes, with decreased expression of COL2A, aggrecan, and Sox-9. Sclerostin, a Wnt antagonist possesses a protective effect for the cartilage, while DKK-1 inhibits VEGF, suspending neoangiogenesis in the subchondral bone. Experimental conditions mimicking abnormal mechanical load, the pro-inflammatory milieu, but also a decreased OPG/RANKL ratio in the cartilage, trigger chondrocyte apoptosis and loss of the matrix via degradative matrix metalloproteinases, like MMP-13 or MMP-9. Hypoxia, an important cofactor exerts a dual role, promoting matrix synthesis via HIF-1α, a Wnt silencer, but turning on HIF-2α that enhances VEGF and MMP-13, along with aberrant collagen expression and extracellular matrix deterioration in the presence of pro-inflammatory cytokines.
Assuntos
Osso e Ossos/metabolismo , Cartilagem Articular/metabolismo , Osteoartrite/metabolismo , Osteoprotegerina/metabolismo , Ligante RANK/metabolismo , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Proteínas Wnt/metabolismo , Via de Sinalização Wnt , Animais , Osso e Ossos/patologia , Cartilagem Articular/patologia , Humanos , Osteoartrite/patologiaRESUMO
This study investigated the effect of different treatments (centrifugation and filtration; heating; adulteration with sugar syrups, and storage) and collection variables (year and region of the country) on the physicochemical properties of 44 Hungarian acacia honeys. The characteristics measured were diastase activity, hydroxyl-methyl-furfural (HMF), total phenolic content (TPC), electrical conductivity (EC), colour, pH, proline, moisture, sucrose, fructose and glucose contents, and concentration of eleven elements (As, B, Cd, Cr, Fe, K, Mg, Na, P, S, Zn). Centrifugation and filtration reduced the concentration of all examined parameters, except for moisture. Heating reduced diastase activity, proline and total phenolic concentrations and increased HMF concentration and colour value. Adulteration with sugar syrups had adverse effects on the diastase activity, proline, moisture and sugar concentrations, EC, colour and pH. Two-year storage reduced diastase activity, HMF, proline and TPC concentrations and increased sucrose concentrations. The collecting area influenced Na, Fe and As concentration, but the collecting year had no effect on the examined parameters. It is concluded that method and region of honey collection, duration of storage and processing all have major effects on the quality of acacia honey. Applied sugar syrup, although it affected honey quality, would be difficult to detect in the finished product.
RESUMO
Itaconic acid is a five-carbon dicarboxylic acid with an unsaturated alkene bond, frequently used as a building block for the industrial production of a variety of synthetic polymers. It is also one of the major products of fungal "overflow metabolism" which can be produced in submerged fermentations of the filamentous fungus Aspergillus terreus. At the present, molar yields of itaconate are lower than those obtained in citric acid production in Aspergillus niger. Here, we have studied the possibility that the yield may be limited by the oxygen supply during fermentation and hence tested the effect of the dissolved oxygen concentration on the itaconic acid formation rate and yield in lab-scale bioreactors. The data show that a dissolved oxygen concentration of 2% saturation was sufficient for maximal biomass formation. Raising it to 30% saturation had no effect on biomass formation or the growth rate, but the itaconate yield augmented substantially from 0.53 to 0.85 mol itaconate/mol glucose. Furthermore, the volumetric and specific rates of itaconic acid formation ameliorated by as much as 150% concurrent with faster glucose consumption, shortening the fermentation time by 48 h. Further increasing the dissolved oxygen concentration over 30% saturation had no effect. Moreover, we show that this increase in itaconic acid production coincides with an increase in alternative respiration, circumventing the formation of surplus ATP by the cytochrome electron transport chain, as well as with increased levels of alternative oxidase transcript. We conclude that high(er) itaconic acid accumulation requires a dissolved oxygen concentration that is much higher than that needed for maximal biomass formation, and postulate that the induction of alternative respiration allows the necessary NADH reoxidation ratio without surplus ATP production to increase the glucose consumption and the flux through overflow metabolism.
Assuntos
Aspergillus niger/enzimologia , Aspergillus niger/metabolismo , Proteínas Fúngicas/metabolismo , Glucose/metabolismo , Proteínas Mitocondriais/metabolismo , Oxirredutases/metabolismo , Oxigênio/metabolismo , Proteínas de Plantas/metabolismo , Succinatos/metabolismo , Trifosfato de Adenosina/metabolismo , Aspergillus niger/genética , Aspergillus niger/crescimento & desenvolvimento , Biomassa , Reatores Biológicos/microbiologia , Ácido Cítrico/metabolismo , Fermentação , Proteínas Fúngicas/genética , Proteínas Mitocondriais/genética , Oxirredutases/genética , Oxigênio/análise , Proteínas de Plantas/genéticaRESUMO
Pregnant women are prone to iodine deficiency due to the increased need for iodine during gestation. Progress has recently occurred in establishing serum thyroglobulin (Tg) as an iodine status biomarker, but there is no accepted reference range for iodine sufficiency during pregnancy. An observational study was conducted in 164 pregnant women. At week 16 of gestation urinary iodine concentration (UIC), serum Tg, and thyroid functions were measured, and information on the type of iodine supplementation and smoking were recorded. The parameters of those who started iodine supplementation (≥150 µg/day) at least 4 weeks before pregnancy (n = 27), who started at the detection of pregnancy (n = 51), and who had no iodine supplementation (n = 74) were compared. Sufficient iodine supply was found in the studied population based on median UIC (162 µg/L). Iodine supplementation ≥150 µg/day resulted in higher median UIC regardless of its duration (nonusers: 130 µg/L vs. prepregnancy iodine starters: 240 µg/L, and pregnancy iodine starters: 205 µg/L, p < .001, and p = .023, respectively). Median Tg value of pregnancy starters was identical to that of nonusers (14.5 vs. 14.6 µg/L), whereas prepregnancy starters had lower median Tg (9.1 µg/L, p = .018). Serum Tg concentration at week 16 of pregnancy showed negative relationship (p = .010) with duration of iodine supplementation and positive relationship (p = .008) with smoking, a known interfering factor of iodine metabolism, by multiple regression analysis. Serum Tg at week 16 of pregnancy may be a promising biomarker of preconceptual and first trimester maternal iodine status, the critical early phase of foetal brain development.
Assuntos
Deficiências Nutricionais/prevenção & controle , Iodo/uso terapêutico , Fenômenos Fisiológicos da Nutrição Materna , Estado Nutricional , Cuidado Pré-Concepcional , Complicações na Gravidez/prevenção & controle , Tireoglobulina/sangue , Adulto , Biomarcadores/sangue , Biomarcadores/urina , Deficiências Nutricionais/sangue , Deficiências Nutricionais/etiologia , Deficiências Nutricionais/urina , Dieta Saudável , Suplementos Nutricionais , Feminino , Conhecimentos, Atitudes e Prática em Saúde , Humanos , Hungria , Iodo/deficiência , Iodo/urina , Cooperação do Paciente , Gravidez , Complicações na Gravidez/sangue , Complicações na Gravidez/etiologia , Complicações na Gravidez/urina , Primeiro Trimestre da Gravidez , Segundo Trimestre da Gravidez , Valores de Referência , Autorrelato , Fumar/efeitos adversos , Cloreto de Sódio na Dieta/uso terapêuticoRESUMO
Selenium (Se) is an essential element for animals and humans, but not plants. However, the capacity of some plants to accumulate and transform Se into bioactive compounds has important implications for human nutrition and health. In this study, sunflower (Helianthus annuus) and maize (Zea mays) seedlings were cultivated in soil to investigate the effect of different rates of sodium selenite (1-90 mg kg-1 soil) and sodium selenate (1-30 mg kg-1 soil) on absorption and translocation of Se and sulphur (S). Sodium selenate decreased growth of sunflower roots at all applied rates and of maize roots at the highest rate applied. In contrast, sodium selenite up to 30 mg kg-1 for sunflower and 3 mg kg-1 for maize resulted in increased shoot and root growth. An increase in Se concentration in soil resulted in an increase in Se and a decrease in S accumulation in roots and shoots of both maize and sunflower. Selenium translocation from roots to shoot was higher in sunflower than maize. Root-to-shoot translocation of Se was 5 to 30 times greater in sunflower and 0.4 to 3 times greater in maize in the sodium selenate than sodium selenite treatments. Sunflower, as a Se-hyperaccumulator with up to 1.8 g kg-1 in shoots (with no significant decrease in shoot biomass) can be a valuable plant in biofortification to improve animal/human nutrition, as well as in phytoremediation of contaminated sites to restore ecosystem services.
Assuntos
Helianthus/metabolismo , Raízes de Plantas/metabolismo , Plântula/metabolismo , Ácido Selênico/metabolismo , Selenito de Sódio/metabolismo , Enxofre/metabolismo , Zea mays/metabolismo , Selênio/metabolismo , SoloRESUMO
Detection of soil element deficiencies is time consuming, requiring a major commitment for field work and analysis. Bees concentrate some elements in their honey which could allow soil element concentrations to be predicted without having to take large numbers of soil samples. We measured 14 element concentrations in soil, sunflower, acacia flower and honey samples from two different regions of Hungary. Across sites, the elements with significant correlation coefficients between honey and soil concentrations, in descending order of probability, were Cu > Ba >Sr = Ni > Zn > Mn = Pb >As. Bioconcentration from soil to honey was similar for areas with acacia and sunflower flowers. In the macroelements, it was the greatest for K, S and P and least for Mg and Na, and in the microelements, greatest for B, then Zn, then Cu, then As, Mo and Sr and least for Fe, Ba, Mn and Pb. It is concluded that in acacia and sunflower-growing regions, honey can give an accurate estimate of soil element concentrations for Cu and Ba and provides relevant information for Sr, Ni, Zn, Mn, Pb and As.
Assuntos
Monitoramento Ambiental/métodos , Flores/química , Mel/análise , Oligoelementos/análise , Hungria , Solo/químicaRESUMO
Selenium deficiency in various degrees affects around 15% of the world's population, contributing to a variety of health problems. In this study, we examined the accumulation and biotransformation of soil applied Se-supplementation (sodium selenite and sodium selenate forms) at different concentrations, along with growth and yield formation of green pea, in a greenhouse experiment. Biotransformation of inorganic Se was evaluated using HPLC-ICP-MS for Se-species separation in the above ground parts of green pea. Results showed 3 mg kg-1 SeIV increased green pea growth biomarkers and also caused an increase in protein content in leaves by 17%. Selenomethionine represented 65% of the total selenium content in shoots, but was lower in pods and seeds (54 and 38%, respectively). Selenomethionine was the major species in all plant parts and the only organic selenium form in the lower SeIV concentration range. Elevating the dose of SeIV (≥30 mg kg-1) triggered detrimental effects on growth and protein content and caused higher accumulation of inorganic Se in forms of SeVI and SeIV. Selenocysteine, another organic form of proteinogenic amino acid, was determined when SeIV (≥10 mg kg-1) was applied in higher concentrations. Thus, agronomic biofortification using the appropriate chemical form and concentration of Se will have positive effects on green pea growth and its enriched shoots and seeds provide a value-added protein source for livestock and humans with significant increased selenomethionine.
Assuntos
Suplementos Nutricionais , Pisum sativum/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Selênio/metabolismo , Animais , Biotransformação , Humanos , Gado , Compostos Organosselênicos/análise , Compostos Organosselênicos/metabolismo , Pisum sativum/crescimento & desenvolvimento , Pisum sativum/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/análise , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Ácido Selênico/metabolismo , Selênio/análise , Selenometionina/análise , Selenometionina/metabolismo , Selenito de Sódio/metabolismoRESUMO
Supplement of common fertilizers with selenium (Se) for crop production will be an effective way to produce selenium-rich food and feed. The value of green pea seeds and forages as alternative protein source can be improved by using agronomic biofortification. Therefore, biological changes of green pea (Pisum sativum L.) and influences of inorganic forms of Se (sodium selenite and sodium selenate) at different concentrations on the accumulation of magnesium (Mg) and phosphorus (P) were investigated in greenhouse experiment. 3 mg kg-1 of selenite had positive effects to enhance photosynthetic attributes and decrease lipid peroxidation significantly. At the same time, Se accumulation increased in all parts of plant by increasing Se supply. Moreover, Mg and P accumulations were significantly increased at 3 mg kg-1 selenite and 1 mg kg-1 selenate treatments, respectively. By contrast higher selenite concentrations (≥30 mg kg-1) exerted toxic effects on plants. Relative chlorophyll content, actual photochemical efficiency of PSII (ФPSII) and Mg accumulation showed significant decrease while membrane lipid peroxidation increased. Thus, the present findings prove Se biofortification has positive effects on biological traits of green pea to provide it as a proper functional product.
Assuntos
Fertilizantes , Pisum sativum/metabolismo , Ácido Selênico/metabolismo , Selenito de Sódio/metabolismo , Ração Animal/análise , Animais , Humanos , Magnésio/metabolismo , Malondialdeído/metabolismo , Pisum sativum/química , Pisum sativum/efeitos dos fármacos , Peroxidase/metabolismo , Fósforo/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/química , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Brotos de Planta/química , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo , Sementes/química , Sementes/efeitos dos fármacos , Sementes/metabolismo , Ácido Selênico/farmacologia , Selenito de Sódio/farmacologia , Verduras/química , Verduras/efeitos dos fármacos , Verduras/metabolismoRESUMO
Several studies have demonstrated that selenium (Se) at low concentrations is beneficial, whereas high Se concentrations can induce toxicity. Controlling Se uptake, metabolism, translocation and accumulation in plants is important to decrease potential health risks and helping to select proper biofortification methods to improve the nutritional content of plant-based foods. The uptake and distribution of Se, changes in Se content, and effects of various concentrations of Se in two forms (sodium selenite and sodium selenate) on sunflower and maize plants were measured in nutrient solution experiments. Results revealed the Se content in shoots and roots of both sunflower and maize plants significantly increased as the Se level increased. In this study, the highest exposure concentrations (30 and 90 mg/L, respectively) caused toxicity in both sunflower and maize. While both Se forms damaged and inhibited plant growth, each behaved differently, as toxicity due to selenite was observed more than in the selenate treatments. Sunflower demonstrated a high Se accumulation capacity, with higher translocation of selenate from roots to shoots compared with selenite. Since in seleniferous soils, a high change in plants' capability exists to uptake Se from these soils and also most of the cultivated crop plants have a bit tolerance to high Se levels, distinction of plants with different Se tolerance is important. This study has tried to discuss about it.
Assuntos
Helianthus/metabolismo , Ácido Selênico/toxicidade , Selenito de Sódio/toxicidade , Zea mays/metabolismo , Hidroponia , Raízes de Plantas/metabolismo , Plântula/efeitos dos fármacos , SoloRESUMO
INTRODUCTION: Two current types of laparoscopic inguinal hernia repair are known: the TransAbdominal PrePeritoneal (TAPP) and the Totally ExtraPeritoneal (TEP) method. The mesh is placed in the preperitoneal space (sublay). Usually during TAPP method we fix the mesh with tacks or staples. In case of TEP fixation it is not necessary because the intraabdominal pressure keeps the implant in position. There is no significant difference between the two methods in terms of recurrence. The advantage of TEP is that the abdominal cavity remains intact, hence reduces the risk of intraabdominal injuries and adhesions. It is unnecessary to use special stapler or tacker. MATERIALS AND METHODS: Our team performed 50 TEP procedures in male patients with uni- or bilateral inguinal hernias in the period 2011-2013. We prepared the mesh in a special way according to Stolzenburg and placed it to the subfunicular area. We did not apply additional fixation (tacks, stitches) and drainage. Mean hospital stay was 1 day. We allowed complete physical activity 10-12 days after surgery. RESULTS: No recurrence was observed during the 2 years of follow-up. The mean operating time was 70 minutes. We performed conversion in 3 cases (Lichtenstein 2, TAPP 1). In one case there was an injury of the inferior epigastric artery. In two cases we have detected neuralgia in the postoperative period. CONCLUSIONS: After the learning curve the TEP method can be used safely with good functional results. The technique of mesh positioning reduces the risk of complications and provides cost-effectiveness.
Assuntos
Hérnia Inguinal/cirurgia , Laparoscopia , Telas Cirúrgicas , Adulto , Análise Custo-Benefício , Seguimentos , Hérnia Inguinal/patologia , Humanos , Hungria , Laparoscopia/métodos , Tempo de Internação , Masculino , Pessoa de Meia-Idade , Atividade Motora , Duração da Cirurgia , Complicações Pós-Operatórias/prevenção & controle , Resultado do TratamentoRESUMO
In this study macro, micro and trace elemental concentrations were measured in Eritrean acacia honey samples by Inductively Coupled Plasma Optical Emission Spectrometry (Al, B, C, K, Mg, Na, P and S) and Inductively Coupled Plasma Mass Spectrometry (As, Ba, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Sr and Zn). The concentration of essential elements in the examined Eritrean acacia honeys decreased in the following order: K > P > Ca > Mg > Fe > Zn > Mn > Cu > Sr > Mo. Independent samples T test was used to determine the statistically verified differences between the two regions, but there was none; however there were remarkable differences among the measured element contents of specific honey samples. Elemental concentrations of Eritrean honeys are influenced by the characteristics of the collecting area (e.g. elevation, agricultural activities, water resources).Our samples showed low essential elemental concentration; therefore the consumption of these honeys does not contribute significantly to the nutrition reference value (NRV) (around 1% of NRV). Toxic elemental concentrations were also low; thus the calculated estimated daily intakes were much lower than the tolerable daily intakes. Consumption of these honeys presents no risk for the human body.
Assuntos
Mel , Oligoelementos , Humanos , Mel/análise , Eritreia , Oligoelementos/análise , Análise Espectral , AgriculturaRESUMO
BACKGROUND: Tolerance of plants towards selenium, a non-essential microelement for higher plants, is a key issue when designing either the indirect (selenium-depletion from highly seleniferous soils) or directed (selenized feed production) enrichment of selenium in forages. Alfalfa (Medicago sativa L.), the well-known forage crop of the Fabaceae family, has been gaining considerable interest due to its application as a green manure, as a cover crop, or in soil remediation by nitrogen fixation. OBJECTIVE: The goal of our study was to assess into which selenocompounds alfalfa plants biotransform the excess selenium uptake from the soil. Selenocompounds (other than selenomethionine and inorganic forms) accumulated in the fiber and the so-called brown juice by-product fractions of processed alfalfa biomass were targeted. METHODOLOGY: Inductively coupled plasma - mass spectrometry assisted multidimensional (strong anion exchange, strong cation exchange, reversed phase) orthogonal chromatographic purification was applied to supply Se-containing fractions in adequately high purity for electrospray high-resolution mass spectrometry (used for the first time for this matrix) analyses. RESULTS: As a total, 30 selenocompounds (with isomers) were described, showing the abundance of the derivatives of selenohexose, selenohomolanthionine, and 2,3-dihydroxypropionic acid. Out of the 30 selenocompounds, 15 could be assigned the elemental composition, and the tentative structure of five compounds including among others deamino-2-oxo-selenohomolanthionine, deamino-hydroxy-selenohomolanthionine, and the dimer of 2,3-dihydroxypropionyl-selenohomocysteine could be presented. CONCLUSIONS: The studied fractions arising from the standard alfalfa processing technology contained a wide variety of selenocompounds whose origin can be either the plant's inherent Se metabolism or the processing technology itself. The importance of negative mode data acquisition has been highlighted, as out of the 30 compounds, 16 could be detected exclusively in this electrospray ionization mode.