Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell ; 185(24): 4526-4540.e18, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36347253

RESUMO

Low-molecular-weight (LMW) thiols are small-molecule antioxidants required for the maintenance of intracellular redox homeostasis. However, many host-associated microbes, including the gastric pathogen Helicobacter pylori, unexpectedly lack LMW-thiol biosynthetic pathways. Using reactivity-guided metabolomics, we identified the unusual LMW thiol ergothioneine (EGT) in H. pylori. Dietary EGT accumulates to millimolar levels in human tissues and has been broadly implicated in mitigating disease risk. Although certain microorganisms synthesize EGT, we discovered that H. pylori acquires this LMW thiol from the host environment using a highly selective ATP-binding cassette transporter-EgtUV. EgtUV confers a competitive colonization advantage in vivo and is widely conserved in gastrointestinal microbes. Furthermore, we found that human fecal bacteria metabolize EGT, which may contribute to production of the disease-associated metabolite trimethylamine N-oxide. Collectively, our findings illustrate a previously unappreciated mechanism of microbial redox regulation in the gut and suggest that inter-kingdom competition for dietary EGT may broadly impact human health.


Assuntos
Ergotioneína , Humanos , Ergotioneína/metabolismo , Antioxidantes/metabolismo , Oxirredução , Compostos de Sulfidrila , Peso Molecular
2.
PLoS Pathog ; 19(7): e1011526, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37494402

RESUMO

Mammalian cells synthesize the antioxidant glutathione (GSH) to shield cellular biomolecules from oxidative damage. Certain bacteria, including the gastric pathogen Helicobacter pylori, can perturb host GSH homeostasis. H. pylori infection significantly decreases GSH levels in host tissues, which has been attributed to the accumulation of reactive oxygen species in infected cells. However, the precise mechanism of H. pylori-induced GSH depletion remains unknown, and tools for studying this process during infection are limited. We developed an isotope-tracing approach to quantitatively monitor host-derived GSH in H. pylori-infected cells by mass spectrometry. Using this method, we determined that H. pylori catabolizes reduced GSH from gastric cells using γ-glutamyl transpeptidase (gGT), an enzyme that hydrolyzes GSH to glutamate and cysteinylglycine (Cys-Gly). gGT is an established virulence factor with immunomodulatory properties that is required for H. pylori colonization in vivo. We found that H. pylori internalizes Cys-Gly in a gGT-dependent manner and that Cys-Gly production during H. pylori infection is coupled to the depletion of intracellular GSH from infected cells. Consistent with bacterial catabolism of host GSH, levels of oxidized GSH did not increase during H. pylori infection, and exogenous antioxidants were unable to restore the GSH content of infected cells. Altogether, our results indicate that H. pylori-induced GSH depletion proceeds via an oxidation-independent mechanism driven by the bacterial enzyme gGT, which fortifies bacterial acquisition of nutrients from the host. Additionally, our work establishes a method for tracking the metabolic fate of host-derived GSH during infection.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Animais , Helicobacter pylori/metabolismo , Infecções por Helicobacter/microbiologia , Estômago , Glutationa/metabolismo , Antioxidantes/metabolismo , Mucosa Gástrica/microbiologia , Mamíferos
3.
Nat Chem Biol ; 18(7): 698-705, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35332331

RESUMO

Oxidative stress is a defining feature of most cancers, including those that stem from carcinogenic infections. Reactive oxygen species can drive tumor formation, yet the molecular oxidation events that contribute to tumorigenesis are largely unknown. Here we show that inactivation of a single, redox-sensitive cysteine in the host protease legumain, which is oxidized during infection with the gastric cancer-causing bacterium Helicobacter pylori, accelerates tumor growth. By using chemical proteomics to map cysteine reactivity in human gastric cells, we determined that H. pylori infection induces oxidation of legumain at Cys219. Legumain oxidation dysregulates intracellular legumain processing and decreases the activity of the enzyme in H. pylori-infected cells. We further show that the site-specific loss of Cys219 reactivity increases tumor growth and mortality in a xenograft model. Our findings establish a link between an infection-induced oxidation site and tumorigenesis while underscoring the importance of cysteine reactivity in tumor growth.


Assuntos
Cisteína Endopeptidases , Infecções por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Transformação Celular Neoplásica/metabolismo , Cisteína/metabolismo , Cisteína Endopeptidases/metabolismo , Humanos , Oxirredução , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/microbiologia , Neoplasias Gástricas/patologia
4.
Curr Top Microbiol Immunol ; 420: 73-91, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30203396

RESUMO

Activity-based protein profiling (ABPP) is a technique for selectively detecting reactive amino acids in complex proteomes with the aid of chemical probes. Using probes that target catalytically active enzymes, ABPP can rapidly define the functional proteome of a biological system. In recent years, this approach has been increasingly applied to globally profile enzymes active at the host-pathogen interface of microbial infections. From in vitro co-culture systems to animal models of infection, these studies have revealed enzyme-mediated mechanisms of microbial pathogenicity, host immunity, and metabolic adaptation that dynamically shape pathogen interactions with the host.


Assuntos
Enzimas/análise , Enzimas/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Proteômica/métodos , Animais , Técnicas de Cocultura , Modelos Animais de Doenças , Enzimas/química , Interações Hospedeiro-Patógeno/imunologia
5.
Nat Commun ; 9(1): 2838, 2018 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-30026491

RESUMO

Norepinephrine is a monoamine neurotransmitter with a wide repertoire of physiological roles in the peripheral and central nervous systems. There are, however, no experimental means to study functional properties of individual noradrenergic synapses in the brain. Development of new approaches for imaging synaptic neurotransmission is of fundamental importance to study specific synaptic changes that occur during learning, behavior, and pathological processes. Here, we introduce fluorescent false neurotransmitter 270 (FFN270), a fluorescent tracer of norepinephrine. As a fluorescent substrate of the norepinephrine and vesicular monoamine transporters, FFN270 labels noradrenergic neurons and their synaptic vesicles, and enables imaging synaptic vesicle content release from specific axonal sites in living rodents. Combining FFN270 imaging and optogenetic stimulation, we find heterogeneous release properties of noradrenergic synapses in the somatosensory cortex, including low and high releasing populations. Through systemic amphetamine administration, we observe rapid release of cortical noradrenergic vesicular content, providing insight into the drug's effect.


Assuntos
Encéfalo/metabolismo , Norepinefrina/metabolismo , Sinapses/metabolismo , Vesículas Sinápticas/metabolismo , Neurônios Adrenérgicos/metabolismo , Animais , Animais Geneticamente Modificados , Encéfalo/citologia , Desenho de Fármacos , Corantes Fluorescentes/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Imagem Molecular/métodos , Norepinefrina/química , Norepinefrina/farmacocinética
6.
ACS Chem Neurosci ; 9(5): 925-934, 2018 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-29281252

RESUMO

Ongoing efforts in our laboratories focus on design of optical reporters known as fluorescent false neurotransmitters (FFNs) that enable the visualization of uptake into, packaging within, and release from individual monoaminergic neurons and presynaptic sites in the brain. Here, we introduce the molecular probe FFN246 as an expansion of the FFN platform to the serotonergic system. Combining the acridone fluorophore with the ethylamine recognition element of serotonin, we identified FFN54 and FFN246 as substrates for both the serotonin transporter and the vesicular monoamine transporter 2 (VMAT2). A systematic structure-activity study revealed the basic structural chemotype of aminoalkyl acridones required for serotonin transporter (SERT) activity and enabled lowering the background labeling of these probes while maintaining SERT activity, which proved essential for obtaining sufficient signal in the brain tissue (FFN246). We demonstrate the utility of FFN246 for direct examination of SERT activity and SERT inhibitors in 96-well cell culture assays, as well as specific labeling of serotonergic neurons of the dorsal raphe nucleus in the living tissue of acute mouse brain slices. While we found only minor FFN246 accumulation in serotonergic axons in murine brain tissue, FFN246 effectively traces serotonin uptake and packaging in the soma of serotonergic neurons with improved photophysical properties and loading parameters compared to known serotonin-based fluorescent tracers.


Assuntos
Encéfalo/metabolismo , Neurotransmissores/metabolismo , Neurônios Serotoninérgicos/metabolismo , Proteínas Vesiculares de Transporte de Monoamina/metabolismo , Animais , Axônios/metabolismo , Camundongos , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA