RESUMO
The use of enrichment and bedding materials in pig husbandry intends to comply with the animals' behavioural needs to perform natural exploratory behaviour, which is strongly connected to foraging behaviour. It can thus be assumed that pigs will ingest a certain material quantity possibly posing a risk to animal health and food safety as previous studies identified contaminants in enrichment and bedding materials. However, risk assessment requires knowledge about the effective amount of ingested material. Voluntary material intake of pigs with free access to peat and disinfectant powder was estimated by measuring the tissue levels of toxic metals originating from the respective materials in 28 pigs (seven groups, n = 4) via inductively coupled plasma mass spectrometry and comparing the results to tissue levels of pigs fed with known amounts of metals. Additionally, as markers of consumption, n-alkanes and acid insoluble ash naturally occurring in the materials and titanium dioxide, added as an external marker to disinfectant powder, were analysed in pigs' faeces. Tissue levels of toxic metals as well as marker analyses in pigs' faeces could prove material consumption. Results revealed mean voluntary intake levels of peat and disinfectant powder by pigs up to 7% and 2% of the daily ration. Hence, a transfer of contained toxic metals into the food chain might occur. Although current maximum levels for toxic elements in animal tissues were not exceeded due to dietary inclusion of peat or disinfectant powder, dietary exposure through food of animal origin should be reduced to a possible minimum. This applies specifically for elements, where no health-based guidance values for humans could have been derived (e.g. arsenic). Thus, labelling guidelines for enrichment and bedding materials can be a perspective to limit the entry of toxic metals and trace elements into the environment.
Assuntos
Solo , Oligoelementos , Humanos , Animais , Suínos , Pós , Dieta/veterinária , Ração Animal/análiseRESUMO
A pilot study was performed with dairy sheep to generate the first data on the transfer of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) from feed into food of animal origin. Corn silage was cultivated on cropland in Lower Saxony in Germany where, as a result of illegal waste disposal in 2006, farmland was contaminated with perfluorinated alkylacids (PFAAs). Two sheep were exposed by way of PFAA-contaminated corn silage to PFOS (1.16 and 1.45 µg/kg body weight [bw]/d, respectively) and PFOA (0.43 and 0.53 µg/kg bw/d) during a period of 21 days. During the PFAA-feeding period, PFOS levels in plasma increased continuously to maximum concentration of 103 and 240 µg/L for sheep 1 and sheep 2, respectively. The PFOA plasma concentration remained low (sheep 1 = 3.3 ± 2.2 µg/L; sheep 2 = 15.6 ± 8.3 µg/L). Data indicate that urinary excretion is the primary clearance route for PFOA (sheep 1 = 51 %; sheep 2 = 55 %), whereas PFOS excretion by way of urine could not be quantified. The highest PFOS excretion (4 to 5 %) was detected in faeces. PFOS was also excreted at higher levels than PFOA by way of milk. During a period of 21 days, a total PFOS transfer into milk ≤ 2 % was calculated. Overall, total excretion of PFOS was significantly lower compared with that of PFOA (PFOS 6 %; PFOA 53 to 56 %). PFOS levels in sheep 1 and sheep 2 were highest in liver (885 and 1,172 µg/kg weight wet [ww], respectively) and lowest in muscle tissue (24.4 and 35.1 µg/kg ww, respectively). PFOA levels in muscle tissue were low for sheep 2 (0.23 µg/kg ww) and not detectable after the PFAA-free feeding period in sheep 1. A slight background load of PFOS in liver (1.5 µg/kg ww) and kidney (0.3 µg/kg ww) was detected in sheep 3 (control).
Assuntos
Ácidos Alcanossulfônicos/farmacocinética , Caprilatos/farmacocinética , Fluorocarbonos/farmacocinética , Contaminação de Alimentos/análise , Carne/análise , Leite/química , Ovinos/metabolismo , Poluentes do Solo/farmacocinética , Ácidos Alcanossulfônicos/análise , Animais , Caprilatos/análise , Cromatografia Líquida de Alta Pressão , Feminino , Fluorocarbonos/análise , Alemanha , Resíduos Industriais/análise , Projetos Piloto , Silagem/análise , Poluentes do Solo/análise , Distribuição TecidualRESUMO
BACKGROUND: Domestic pigs have an evolutionary conserved exploratory behaviour. To comply with this requirement, the European Union aims at setting standards for appropriate enrichment materials for pigs (Council Directive 2008/120/EC). As recommended characteristics include 'chewable' and 'edible', pigs might also consume these materials (Commission Recommendation (EU) 2016/336), which are often additionally advertised to enhance lying comfort and hygienic conditions in stables. To date, a wide range of bedding, enrichment and disinfectant materials is available on the market to ensure environmental enrichment, a dry, hygienic environment or lying comfort. Previous studies revealed considerable amounts of undesirable substances in some of these materials possibly being a risk for food safety considering oral uptake by the animal. To determine interest and indicators for consumption of different types of materials by pigs during exploratory behaviour, a camera-assisted observational study with 12 female pigs (German Landrace) was conducted. We tested their preference for a disinfectant powder, peat, biochar and straw as reference material in a 4 × 6 factorial arrangement. RESULTS: Pigs manipulated and consumed all offered materials. However, longest manipulation time per pig was observed for biochar (63 min/day) and peat (50 min/day) (p < 0.05). Analyses of the bulk molecular-chemical composition and n-alkanes and acid insoluble ash as markers in the materials and in faeces clearly revealed the consumption of these materials by pigs. CONCLUSIONS: Whether the consumption of considerable amounts together with certain levels of undesirable substances represents a risk for pig and consumer health could yet not be established. Future studies will address the quantitative contribution of undesirable substances by oral ingestion of bedding and enrichment materials and disinfectant powders to the daily feed ration.
RESUMO
Per- and polyfluoroalkyl substances (PFAS) are environmentally ubiquitous, anthropogenic substances with adverse effects on organisms, which shows the need to study their environmental fate and leaching behavior. In the present soil columns study, the leaching behavior and fate of nontransformable and transformable (precursors) were investigated. Ten nontransformable PFAS in two different soils, two precursors and two field soils, which were already contaminated with a mixture of PFAS, and two uncontaminated controls, were set up for a time span of 2 years. At the end of the study, the molecular balance could not be closed for nontransformable PFAS. This effect was positively correlated to the fluorinated carbon chain length. The precursors, which were both polyfluoroalkyl phosphate diesters (diPAP), had different transformation products and transformation rates, with a higher rate for 6:2 diPAP than 8:2 diPAP. After 2 years, amounts of diPAP were still found in the soil with no significant vertical movement, showing high adsorption to soils. Transformation products were estimated to be simultaneously formed. They were predominantly found in the percolation water; the amounts left in soil were negligible. Up to half of the initial precursor amounts could not be balanced and were considered missing amounts. The results of contaminated field soil experiments showed the challenge to estimate PFAS leaching without knowing all occurring precursors and complex transformation dynamics. For this purpose, it was shown that a broad examination of contaminated soil with different analytical methods can help with qualitative estimations of leaching risks. For a better quantitative estimation, analytical determination of more PFAS and a quantification of the missing amounts are needed. Environ Toxicol Chem 2022;41:2065-2077. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Assuntos
Fluorocarbonos , Poluentes do Solo , Poluentes Químicos da Água , Organofosfatos , Fosfatos , Solo/química , Poluentes Químicos da Água/análiseRESUMO
Fluorotelomer precursors in soil constitute a reservoir for perfluoroalkyl acids (PFAAs) in the environment. In the present study, precursor degradation and transfer rates of seven fluorotelomer precursors and F-53B (chlorinated polyfluoroalkyl ether sulfonates) were investigated in pot experiments with maize plants (Zea mays L.). The degradation of fluorotelomer precursors to perfluoroalkyl carboxylic acids (PFCAs) and their uptake spectra corresponded to those of fluorotelomer alcohol (FTOH) in terms of the number of perfluorinated carbon atoms. Short-chain PFCAs were translocated into the shoots (in descending order perfluoropentanoic, perfluorobutanoic, and perfluorohexanoic acid), whereas long-chain PFCAs mainly remained in the soil. In particular, fluorotelomer phosphate diesters (diPAPs) were retained in the soil and showed the highest degradation potential including evidence of α-oxidative processes. F-53B did not degrade to PFAAs and its constituents were mainly detected in the roots with minor uptake into the shoots. The results demonstrate the important role of precursors as an entry pathway for PFCAs into the food chain.
Assuntos
Fluorocarbonos , Ácidos Carboxílicos/metabolismo , Fluorocarbonos/análise , Fosfatos/metabolismo , Solo , Zea mays/metabolismoRESUMO
In this study, 6:2 and 8:2 polyfluoroalkyl phosphate diester (diPAP) were individually investigated in lysimeters under near-natural conditions. Leachate was sampled for 2 years, as was the soil after the experiment. In the leachate of the diPAP-spiked soils, perfluorocarboxylic acids (PFCAs) of different chain lengths were detected [23.2% (6:2 diPAP variant) and 20.8% (8:2 diPAP variant) of the initially applied molar amount]. After 2 years, the soils still contained 36-37% 6:2 diPAP and 41-45% 8:2 diPAP, respectively, in addition to smaller amounts of PFCAs (1.5 and 10.6%, respectively). Amounts of PFCAs found in the grass were low (<0.1% in both variants). The recovery rate of both 6:2 diPAP and 8:2 diPAP did not reach 100% (63.9 and 83.2%, respectively). The transformation of immobile diPAPs into persistent mobile PFCAs and their transport into the groundwater shows a pathway for human exposure to hazardous PFCAs through drinking water and irrigation of crops.
Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Humanos , Fosfatos/metabolismo , Fluorocarbonos/análise , Organofosfatos/metabolismo , Solo , Produtos Agrícolas/metabolismoRESUMO
Undesirable substances in feed can transfer into foods of animal origin after ingestion by livestock animals. These contaminants in food may threaten consumer health. Commonly, feeding trials are conducted with animals to assess the transfer of undesirable substances into animal tissues or milk. Such feeding trials explore the effects of the various physiological systems (e.g., ruminant and non-ruminant gastro-intestinal tracts) as well as different livestock production intensities on transfer. Using alternative methods to mimic the complex physiological processes of several organs is highly challenging. This review proposes a potential cascade of in vitro and ex vivo models to investigate the transfer of contaminants from feed into foods of animal origin. One distinct challenge regarding the models for ruminants is the simulation of the forestomach system, with the rumen as the anaerobic fermentation chamber and its epithelial surfaces for absorption. Therefore, emphasis is placed on in vitro systems simulating the rumen with its microbial ecosystem as well as on ex vivo systems to replicate epithelial absorption. Further, the transfer from blood into milk must be evaluated by employing a suitable model. Finally, in silico approaches are introduced that can fill knowledge gaps or substitute in vitro and ex vivo models. Physiologically-based toxicokinetics combines the information gained from all alternative methods to simulate the transfer of ingested undesirable substances into foods of animal origin.
Assuntos
Ecossistema , Ruminantes , Animais , Fermentação , RúmenRESUMO
A feeding study was performed to examine the bioaccumulation of per- and polyfluoroalkyl substances (PFAS) in laying hens' tissues and plasma and feed-to-egg transfer rates and half-lives. A 25 day exposure was followed by a 42 day depuration period. A target analysis revealed substantial amounts of the precursors N-methyl and N-ethyl perfluorooctane sulfonamidoacetic acid (Me- and EtFOSAA), perfluorooctane sulfonamidoacetic acid (FOSAA), and perfluorooctane sulfonamide (FOSA). In tissues and eggs, the highest bioaccumulation was found for PFHxS, PFHpS, PFOS, and PFOA. Low levels of PFHxS (all samples), PFOS, and FOSAA (in yolk) were measurable even after the depuration period. The egg elimination half-lives of PFOS and aforementioned precursors were estimated to be 4.3 days, while the transfer rates of PFOS and all precursors taken together were 0.99. The transfer rate of PFOA was around 0.49. PFHxS and PFHpS showed apparent transfer rates of >100%, which is hypothesized to indicate the presence of precursors.
Assuntos
Ácidos Alcanossulfônicos/química , Ração Animal/análise , Galinhas/metabolismo , Ovos/análise , Poluentes Ambientais/química , Fluorocarbonos/química , Contaminação de Alimentos/análise , Ácidos Alcanossulfônicos/metabolismo , Animais , Poluentes Ambientais/metabolismo , Feminino , Fluorocarbonos/metabolismo , ToxicocinéticaRESUMO
The group of per- and polyfluoroalkyl substances (PFAS) comprises thousands of chemicals, which are used in various industrial applications and consumer products. In this study, a feeding experiment with laying hens and feed grown on a contamination site was conducted, and PFAS were analyzed in the feed and eggs to assess the transfer of PFAS into eggs. A targeted analysis of perfluoroalkyl acids (PFAAs) and different sulfonamides was performed. Additionally, the total oxidizable precursor (TOP) assay was modified by fully oxidizing small amounts of the samples instead of oxidizing their extracts in order to overcome potential losses during extraction. Targeted analysis showed the presence of known PFAAs and four sulfonamides in the feed and egg yolk samples. In the plant-based feed, short-chain PFAAs, methyl and ethyl perfluorooctane sulfonamidoacetic acid (Me- and EtFOSAA), and perfluorooctane sulfonic acid (PFOS) were the most abundant PFAS. In the eggs, PFOS, FOSAA, and its alkylated homologues showed the highest concentrations. The TOP assay revealed the presence of substantial amounts of precursors with different chain lengths from C4 to C8. The highest relative increase of PFOA after oxidation was observed in egg yolk from the end of the exposure period (828%). The results of this study demonstrate the transfer of PFAAs and their precursors into hens' eggs and emphasize the contribution of (known and unidentified) precursors to the overall PFAS burden in edible products. The modified TOP assay approach was shown to be a powerful tool to better assess the total burden of samples with PFAS.
Assuntos
Ácidos Alcanossulfônicos/análise , Ração Animal/análise , Galinhas/metabolismo , Ovos/análise , Poluentes Ambientais/análise , Fluorocarbonos/análise , Contaminação de Alimentos/análise , Ácidos Alcanossulfônicos/metabolismo , Animais , Poluentes Ambientais/metabolismo , Feminino , Fluorocarbonos/metabolismo , OxirreduçãoRESUMO
The transfer of a mixture of perfluoroalkyl acids (PFAAs) from contaminated feed into the edible tissues of 24 fattening pigs was investigated. Four perfluoroalkyl sulfonic (PFSAs) and three perfluoroalkyl carboxylic acids (PFCAs) were quantifiable in feed, plasma, edible tissues, and urine. As percentages of unexcreted PFAA, the substances accumulated in plasma (up to 51%), fat, and muscle tissues (collectively, meat 40-49%), liver (under 7%), and kidney (under 2%) for most substances. An exception was perfluorooctanesulfonic acid (PFOS), with lower affinity for plasma (23%) and higher for liver (35%). A toxicokinetic model is developed to quantify the absorption, distribution, and excretion of PFAAs and to calculate elimination half-lives. Perfluorohexanoic acid (PFHxA), a PFCA, had the shortest half-life at 4.1 days. PFSAs are eliminated more slowly (e.g., half-life of 634 days for PFOS). PFAAs in pigs exhibit longer elimination half-lives than in most organisms reported in the literature, but still shorter than in humans.
Assuntos
Ração Animal , Ácidos Carboxílicos/farmacocinética , Fluorocarbonos/farmacocinética , Contaminação de Alimentos , Ácidos Sulfônicos/farmacocinética , Sus scrofa/metabolismo , Ração Animal/análise , Animais , Ácidos Carboxílicos/análise , Ácidos Carboxílicos/toxicidade , Feminino , Fluorocarbonos/análise , Fluorocarbonos/toxicidade , Inocuidade dos Alimentos , Meia-Vida , Masculino , Carne/análise , Ácidos Sulfônicos/análise , Ácidos Sulfônicos/toxicidade , ToxicocinéticaRESUMO
The transfer of the perfluoroalkyl acids (PFAAs) perfluorobutanesulfonate (PFBS), perfluorohexanesulfonate (PFHxS), perfluorooctanesulfonate (PFOS), and perfluorooctanoate (PFOA) from feed into tissue and milk of dairy cows was investigated. Holstein cows (n = 6) were fed a PFAA-contaminated feed for 28 days. After the PFAA-feeding period, three cows were slaughtered while the others were fed PFAA-free feed for another 21 days (depuration period). For PFAA analysis plasma, liver, kidney, and muscle tissue, urine, and milk were sampled and analyzed using high-performance liquid chromatography (HPLC) with tandem mass spectrometry (MS/MS). The average daily intake of dairy cows was 3.4 ± 0.7, 4.6 ± 1.0, 7.6 ± 3.7 and 2.0 ± 1.2 µg/kg body weight (bw) for PFBS, PFHxS, PFOS, and PFOA, respectively. Overall, PFBS, PFHxS, PFOS, and PFOA showed different kinetics in dairy cows. In plasma, concentrations of PFBS (mean = 1.2 ± 0.8 µg/L) and PFOA (mean = 8.5 ± 5.7 µg/L) were low, whereas PFHxS and PFOS continuously increased during the PFAA-feeding period up to maximal concentrations of 419 ± 172 and 1903 ± 525 µg/L, respectively. PFOS in plasma remained constantly high during the depuration period. PFOS levels were highest in liver, followed by kidney, without significant differences between feeding periods. The highest PFHxS levels were detected in liver and kidney of cows slaughtered on day 29 (61 ± 24 and 98 ± 31 µg/kg wet weight (ww)). The lowest PFAA levels were detected in muscle tissue. At the end of the feeding study, cumulative secretion in milk was determined for PFOS (14 ± 3.6%) and PFHxS (2.5 ± 0.2%). The other two chemicals were barely secreted into milk: PFBS (0.01 ± 0.02%) and PFOA (0.1 ± 0.06%). Overall, the kinetics of PFOA were similar to those of PFBS and substantially differed from those of PFHxS and PFOS. The very low concentration of PFBS in plasma and milk, the relatively high urinary excretion, and only traces of PFBS in liver (0.3 ± 0.3 µg/kg ww) and kidney (1.0 ± 0.3 µg/kg ww) support the conclusion that PFBS does not accumulate in the body of dairy cows.