Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Bacteriol ; 197(6): 1083-94, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25583974

RESUMO

The presence of multidrug-tolerant persister cells within microbial populations has been implicated in the resiliency of bacterial survival against antibiotic treatments and is a major contributing factor in chronic infections. The mechanisms by which these phenotypic variants are formed have been linked to stress response pathways in various bacterial species, but many of these mechanisms remain unclear. We have previously shown that in the cariogenic organism Streptococcus mutans, the quorum-sensing peptide CSP (competence-stimulating peptide) pheromone was a stress-inducible alarmone that triggered an increased formation of multidrug-tolerant persisters. In this study, we characterized SMU.2027, a CSP-inducible gene encoding a LexA ortholog. We showed that in addition to exogenous CSP exposure, stressors, including heat shock, oxidative stress, and ofloxacin antibiotic, were capable of triggering expression of lexA in an autoregulatory manner akin to that of LexA-like transcriptional regulators. We demonstrated the role of LexA and its importance in regulating tolerance toward DNA damage in a noncanonical SOS mechanism. We showed its involvement and regulatory role in the formation of persisters induced by the CSP-ComDE quorum-sensing regulatory system. We further identified key genes involved in sugar and amino acid metabolism, the clustered regularly interspaced short palindromic repeat (CRISPR) system, and autolysin from transcriptomic analyses that contribute to the formation of quorum-sensing-induced persister cells.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Percepção de Quorum/fisiologia , Serina Endopeptidases/metabolismo , Streptococcus mutans/efeitos dos fármacos , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Dados de Sequência Molecular , Serina Endopeptidases/genética , Streptococcus mutans/genética , Streptococcus mutans/metabolismo , Transcriptoma
2.
J Bacteriol ; 193(5): 1122-30, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21183668

RESUMO

Type II chromosomal toxin-antitoxin (TA) modules consist of a pair of genes that encode two components: a stable toxin and a labile antitoxin interfering with the lethal action of the toxin through protein complex formation. Bioinformatic analysis of Streptococcus mutans UA159 genome identified a pair of linked genes encoding a MazEF-like TA. Our results show that S. mutans mazEF genes form a bicistronic operon that is cotranscribed from a σ70-like promoter. Overproduction of S. mutans MazF toxin had a toxic effect on S. mutans which can be neutralized by coexpression of its cognate antitoxin, S. mutans MazE. Although mazF expression inhibited cell growth, no cell lysis of S. mutans cultures was observed under the conditions tested. The MazEF TA is also functional in E. coli, where S. mutans MazF did not kill the cells but rather caused reversible cell growth arrest. Recombinant S. mutans MazE and MazF proteins were purified and were shown to interact with each other in vivo, confirming the nature of this TA as a type II addiction system. Our data indicate that MazF is a toxic nuclease arresting cell growth through the mechanism of RNA cleavage and that MazE inhibits the RNase activity of MazF by forming a complex. Our results suggest that the MazEF TA module might represent a cell growth modulator facilitating the persistence of S. mutans under the harsh conditions of the oral cavity.


Assuntos
Antitoxinas/metabolismo , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Streptococcus mutans/metabolismo , Sequência de Aminoácidos , Antitoxinas/genética , Proteínas de Bactérias/genética , Toxinas Bacterianas/genética , Sequência de Bases , Biologia Computacional , Genoma Bacteriano , Dados de Sequência Molecular , Mutação , Regiões Promotoras Genéticas , Streptococcus mutans/citologia , Streptococcus mutans/genética
3.
Nat Neurosci ; 20(4): 602-611, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28263302

RESUMO

We are performing whole-genome sequencing of families with autism spectrum disorder (ASD) to build a resource (MSSNG) for subcategorizing the phenotypes and underlying genetic factors involved. Here we report sequencing of 5,205 samples from families with ASD, accompanied by clinical information, creating a database accessible on a cloud platform and through a controlled-access internet portal. We found an average of 73.8 de novo single nucleotide variants and 12.6 de novo insertions and deletions or copy number variations per ASD subject. We identified 18 new candidate ASD-risk genes and found that participants bearing mutations in susceptibility genes had significantly lower adaptive ability (P = 6 × 10-4). In 294 of 2,620 (11.2%) of ASD cases, a molecular basis could be determined and 7.2% of these carried copy number variations and/or chromosomal abnormalities, emphasizing the importance of detecting all forms of genetic variation as diagnostic and therapeutic targets in ASD.


Assuntos
Transtorno do Espectro Autista/genética , Bases de Dados Genéticas , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla/métodos , Aberrações Cromossômicas , Variações do Número de Cópias de DNA , Humanos , Mutagênese Insercional/genética , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Deleção de Sequência/genética
4.
PLoS One ; 8(1): e54291, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23326602

RESUMO

Toxin-antitoxin (TA) modules consist of a pair of genes that encode two components: a protein toxin and an antitoxin, which may be in the form of either a labile protein or an antisense small RNA. Here we describe, to the best of our knowledge, the first functional chromosomal type I TA system in streptococci. Our model organism is the oral pathogen Streptococcus mutans. Our results showed that the genome of S. mutans UA159 reference strain harbors a previously unannotated Fst-like toxin (Fst-Sm) and its cis-encoded small RNA antitoxin (srSm) converging towards the end of the toxin gene in IGR176, a small intergenic region of 318 nt. Fst-Sm is a small hydrophobic peptide of 32 amino acid residues with homology to the Fst toxin family. Transcripts of ∼200 nt and ∼70 nt specific to fst-Sm mRNA and srSm RNA, respectively, were detected by Northern blot analysis throughout S. mutans growth. The toxin mRNA was considerably more stable than its cognate antitoxin. The half-life of srSm RNA was determined to be ∼30 min, while fst-Sm mRNA had a half-life of ∼90 min. Both fst-Sm and srSm RNAs were transcribed across direct tandem repeats providing a region of complementarity for inhibition of toxin translation. Overproduction of Fst-Sm had a toxic effect on E. coli and S. mutans cells which can be neutralized by coexpression of srSm RNA. Deletion of fst-Sm/srSm locus or overexpression of Fst-Sm/srSm had no effect on S. mutans cell growth in liquid medium and no differences in the total biofilm biomass were noted. In contrast, mild-overproduction of Fst-Sm/srSm type I TA system decreases the levels of persister cells tolerant to bacterial cell wall synthesis inhibitors.


Assuntos
Antitoxinas/genética , Proteínas de Bactérias/genética , Toxinas Bacterianas/genética , RNA Antissenso/genética , Streptococcus mutans/genética , Sequência de Aminoácidos , DNA Intergênico , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , RNA Mensageiro/genética , Streptococcus mutans/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA