Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Opt Lett ; 48(2): 427-430, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36638474

RESUMO

Mode-division multiplexing (MDM) enables a large increase in the information-carrying capacity of an optical network. Recently, chip-scale MDM devices that can switch different mode orders to different output waveguides have been demonstrated. However, an important milestone showing dynamically tunable mode-order conversion in a single compact device has so far not been reported. In this work, we demonstrate via simulation and measurement a new, to the best of our knowledge, approach for reconfigurable mode conversion using optical micro-electro-mechanical systems (MEMS) to locally modify the effective index in an asymmetric coupler. Modeling shows that dynamic tuning to increase or decrease the mode order is possible. Measurements on fabricated devices are consistent with simulations of reconfigurable mode conversion based on tunable phase matching. Our experimental results demonstrate reconfigurable TE0-TE2 to TE0-TE1 conversion and validate this new tunable phase-matching approach for mode-division multiplexing.

2.
Opt Express ; 30(9): 14453-14460, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35473187

RESUMO

We describe an in-situ technique to characterize the material refractive indices and waveguide geometry for photonic integrated circuits over hundreds of nanometers of optical bandwidth. By combining white light spectroscopy with unbalanced Mach-Zehnder interferometers, we can simultaneously and accurately extract the core thickness, core width, core refractive index, and cladding refractive index. This information is important for the technological maturation of photonic integrated circuit foundry fabrication. Capturing the inter-wafer and intra-wafer variation of these parameters is necessary to predict the yield of photonic components and for overall process quality control. Refractive indices are found with a 1-σ error of between 0.1% and 0.5%, and geometric parameters are found with an error of between 3 nm and 7 nm. Our analysis and validation are implemented and verified using the same waveguide layers as are used in the standard photonic wafer build, without any external techniques such as ellipsometry or microscopy.

3.
Opt Express ; 29(10): 15443-15451, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33985244

RESUMO

Germanium-on-silicon (GOS) represents the leading platform for foundry-based long-wave infrared photonic integrated circuits (LWIR PICs), due to its CMOS compatibility and absence of oxides. We describe ring resonance (Q-factors between 2×103 and 1×104) and thermo-optic tunability in germanium-on-silicon waveguides throughout the long-wave-infrared. The ring resonances are characterized by Q-factors and couplings that agree with measurements of propagation loss (as low as 6 dB/cm) and simulations and are enabled by broadband edge coupling (12dB/facet over a 3 dB bandwidth of over 4 microns). We demonstrate the furthest into the infrared that ring resonators have been measured and show the potential of this platform for photonic integration and waveguide spectroscopy at wavelengths from 7 microns to beyond 11 microns.

4.
Opt Express ; 28(23): 34927-34934, 2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33182950

RESUMO

To perform waveguide-enhanced Raman spectroscopy (WERS) or fluorescence spectroscopy in a compact device, the optical fibers to couple the passive photonic circuit to the laser source and detector require attachment directly to the die. This necessitates the integration of edge couplers and waveguide-based filters to isolate the fiber background emission from the on-chip signal, while efficiently coupling the pump laser and detector to the input and output fibers, respectively. In this work, we experimentally demonstrate the successful integration of four-port lattice filters with sensing spirals and inverse-taper edge couplers in a passive photonic circuit. We further show that the four-port lattice filter enables the collection of backscattered on-chip Stokes signal, improving and simplifying overall system performance.

5.
Opt Lett ; 44(13): 3346-3349, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31259957

RESUMO

Nanophotonic structures coupled with mechanics enable large effective index perturbation. To date, however, the relation between index tuning and induced optical loss has not been considered in detail. In this work we present an in-depth study of optical loss mechanisms in an electromechanically-tunable waveguide filter. Gradient electric forces modify the coupling between a microring optical cavity and a suspended micromechanical (MEMS) perturber resulting in a measured tuning greater than one free-spectral range (FSR) and an effective index tuning of 3×10-2. We examine various loss contributions and find, for certain conditions, a surprising reduction in loss with greater MEMS-induced mode perturbation. Modeling confirms the device behavior and loss mitigation is discussed.

6.
Opt Lett ; 43(19): 4803-4806, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30272744

RESUMO

We report the measurement of waveguide-enhanced Raman spectra from trace concentrations of four vapor-phase chemical warfare agent simulants: dimethyl methylphosphonate, diethyl methylphosphonate, trimethyl phosphate, and triethyl phosphate. The spectra are obtained using highly evanescent nanophotonic silicon nitride waveguides coated with a naturally reversible hyperbranched carbosilane sorbent polymer and exhibit extrapolated one-σ detection limits as low as 5 ppb. We use a finite-element model to explain the polarization and wavelength properties of the differential spectra. In addition, we assign spectral features to both the analyte and the sorbent, and show evidence of changes to both due to hydrogen bonding.


Assuntos
Substâncias para a Guerra Química/análise , Substâncias para a Guerra Química/química , Análise Espectral Raman/métodos , Limite de Detecção , Polímeros/química , Compostos de Silício/química , Volatilização
7.
Opt Express ; 24(13): 13917-30, 2016 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-27410554

RESUMO

Photonic integrated circuits have enabled progressively active functionality in compact devices with the potential for large-scale integration. To date the lowest loss photonic circuits are achieved with silica or silicon nitride-based platforms. However, these materials generally lack reconfigurability. In this work we present a platform for achieving active functionality in any dielectric waveguide via large-scale opto-electro-mechanical tuning of the effective refractive index (Δneff≈0.01-0.1) and phase (Δϕ>2π). A suspended microbridge weakly interacts with the evanescent field of a low-mode confinement waveguide to tune the effective refractive index and phase with minimal loss. Metal-coated bridges enable electrostatic actuation to displace the microbridge to dynamically tune nEFF. In a second implementation we place a non-metallized dielectric microbridge in a gradient electric field to achieve actuation and tuning. Both approaches are broadband, universally applicable to any waveguide, and pave the way for adding active functionality to many passive optical materials.

8.
Appl Opt ; 54(31): F164-73, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26560604

RESUMO

This article describes recent research at the U.S. Naval Research Laboratory that focuses on the use of micro- and nanomachining techniques for photonic waveguide devices. By selectively etching a sacrificial layer that the waveguide core is supported by, in whole or in part, the waveguide obtains enhanced properties and functionality, such as mechanical flexibility, index contrast, birefringence, and evanescent field depth. We describe how these properties enable unique waveguide applications in areas such as cavity optomechanics, displacement sensing, electro-optics, and nonlinear optics.

9.
Opt Lett ; 39(4): 969-72, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24562254

RESUMO

We detect trace gases at parts-per-billion levels using evanescent-field absorption spectroscopy in silicon nitride microring resonators coated with a functionalized sorbent polymer. An analysis of the microring resonance line shapes enables a measurement of the differential absorption spectra for a number of vapor-phase analytes. The spectra are obtained at the near-infrared overtone of OH-stretch resonance, which provides information about the toxicity of the analyte vapor.

10.
ACS Sens ; 5(3): 831-836, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32153176

RESUMO

The optical properties of several hydrogen-bond acidic sorbent materials are evaluated in situ to assess their suitability for waveguide-enhanced Raman spectroscopy (WERS) of vapor-phase organophosphonates. A number of characteristics critical to WERS are evaluated for each sorbent: infrared absorption, Raman spectral background, and the limit of detection for a test hydrogen-bond-basic analyte (dimethyl methylphosphonate, DMMP). We describe the chemical properties of the sorbents that differentiate their optical properties for sensing. Then, we introduce a sorbent figure-of-merit that quantifies these differences and provides a framework to assess the quality of newly developed sorbent materials.


Assuntos
Análise Espectral Raman , Ácidos/química , Ligação de Hidrogênio , Organofosfonatos/química , Polímeros/química , Silanos/química , Espectrofotometria Infravermelho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA