Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Psychiatry ; 24(1): 433, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858652

RESUMO

BACKGROUND: Objective and quantifiable markers are crucial for developing novel therapeutics for mental disorders by 1) stratifying clinically similar patients with different underlying neurobiological deficits and 2) objectively tracking disease trajectory and treatment response. Schizophrenia is often confounded with other psychiatric disorders, especially bipolar disorder, if based on cross-sectional symptoms. Awake and sleep EEG have shown promise in identifying neurophysiological differences as biomarkers for schizophrenia. However, most previous studies, while useful, were conducted in European and American populations, had small sample sizes, and utilized varying analytic methods, limiting comprehensive analyses or generalizability to diverse human populations. Furthermore, the extent to which wake and sleep neurophysiology metrics correlate with each other and with symptom severity or cognitive impairment remains unresolved. Moreover, how these neurophysiological markers compare across psychiatric conditions is not well characterized. The utility of biomarkers in clinical trials and practice would be significantly advanced by well-powered transdiagnostic studies. The Global Research Initiative on the Neurophysiology of Schizophrenia (GRINS) project aims to address these questions through a large, multi-center cohort study involving East Asian populations. To promote transparency and reproducibility, we describe the protocol for the GRINS project. METHODS: The research procedure consists of an initial screening interview followed by three subsequent sessions: an introductory interview, an evaluation visit, and an overnight neurophysiological recording session. Data from multiple domains, including demographic and clinical characteristics, behavioral performance (cognitive tasks, motor sequence tasks), and neurophysiological metrics (both awake and sleep electroencephalography), are collected by research groups specialized in each domain. CONCLUSION: Pilot results from the GRINS project demonstrate the feasibility of this study protocol and highlight the importance of such research, as well as its potential to study a broader range of patients with psychiatric conditions. Through GRINS, we are generating a valuable dataset across multiple domains to identify neurophysiological markers of schizophrenia individually and in combination. By applying this protocol to related mental disorders often confounded with each other, we can gather information that offers insight into the neurophysiological characteristics and underlying mechanisms of these severe conditions, informing objective diagnosis, stratification for clinical research, and ultimately, the development of better-targeted treatment matching in the clinic.


Assuntos
Eletroencefalografia , Esquizofrenia , Adulto , Feminino , Humanos , Masculino , Biomarcadores , Estudos de Coortes , Eletroencefalografia/métodos , Neurofisiologia/métodos , Projetos de Pesquisa , Esquizofrenia/fisiopatologia , Esquizofrenia/diagnóstico , Sono/fisiologia , Estudos Transversais , Pessoa de Meia-Idade , Idoso
2.
Res Sq ; 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38410470

RESUMO

Background: Sleep plays a crucial role in early language development, and sleep disturbances are common in children with neurodevelopmental disorders. Examining sleep microarchitecture in toddlers with and without language delays can offer key insights into neurophysiological abnormalities associated with atypical neurodevelopmental trajectories and potentially aid in early detection and intervention. Methods: Here, we investigated electroencephalogram (EEG) coherence and sleep spindles in 16 toddlers with language delay (LD) compared with a group of 39 typically developing (TD) toddlers. The sample was majority male (n = 34, 62%). Participants were aged 12-to-22 months at baseline, and 34 (LD, n=11; TD, n=23) participants were evaluated again at 36 months of age. Results: LD toddlers demonstrated increased EEG coherence compared to TD toddlers, with differences most prominent during slow-wave sleep. Within the LD group, lower expressive language skills were associated with higher coherence in REM sleep. Within the TD group, lower expressive language skills were associated with higher coherence in slow-wave sleep. Sleep spindle density, duration, and frequency changed between baseline and follow-up for both groups, with the LD group demonstrating a smaller magnitude of change than the TD group. The direction of change was frequency-dependent for both groups. Conclusions: These findings indicate that atypical sleep EEG connectivity and sleep spindle development can be detected in toddlers between 12 and 36 months and offers insights into neurophysiological mechanisms underlying the etiology of neurodevelopmental disorders. Trial registration: https://clinicaltrials.gov/study/NCT01339767; Registration date: 4/20/2011.

3.
Sleep Med ; 119: 320-328, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38733760

RESUMO

OBJECTIVES: To determine whether spindle chirp and other sleep oscillatory features differ in young children with and without autism. METHODS: Automated processing software was used to re-assess an extant set of polysomnograms representing 121 children (91 with autism [ASD], 30 typically-developing [TD]), with an age range of 1.35-8.23 years. Spindle metrics, including chirp, and slow oscillation (SO) characteristics were compared between groups. SO and fast and slow spindle (FS, SS) interactions were also investigated. Secondary analyses were performed assessing behavioural data associations, as well as exploratory cohort comparisons to children with non-autism developmental delay (DD). RESULTS: Posterior FS and SS chirp was significantly more negative in ASD than TD. Both groups had comparable intra-spindle frequency range and variance. Frontal and central SO amplitude were decreased in ASD. In contrast to previous manual findings, no differences were detected in other spindle or SO metrics. The ASD group displayed a higher parietal coupling angle. No differences were observed in phase-frequency coupling. The DD group demonstrated lower FS chirp and higher coupling angle than TD. Parietal SS chirp was positively associated with full developmental quotient. CONCLUSIONS: For the first time spindle chirp was investigated in autism and was found to be significantly more negative than in TD in this large cohort of young children. This finding strengthens previous reports of spindle and SO abnormalities in ASD. Further investigation of spindle chirp in healthy and clinical populations across development will help elucidate the significance of this difference and better understand this novel metric.


Assuntos
Transtorno Autístico , Polissonografia , Humanos , Pré-Escolar , Feminino , Masculino , Criança , Transtorno Autístico/fisiopatologia , Lactente , Eletroencefalografia , Sono/fisiologia , Fases do Sono/fisiologia
4.
Alzheimers Dement (Amst) ; 16(3): e12616, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39077684

RESUMO

INTRODUCTION: Sleep is crucial for memory consolidation and the clearance of toxic proteins associated with Alzheimer's disease (AD). We examined the association between sleep characteristics and imaging biomarkers of early amyloid beta (Aß) and tau pathology as well as neurodegeneration in brain regions known to be affected in the incipient stages of AD. METHODS: Thirty-nine cognitively unimpaired (CU) participants of the Harvard Aging Brain Study underwent at-home polysomnography as well as tau positron emission tomography (flortaucipir-PET), amyloid PET (Pittsburgh compound B [PiB]-PET), and magnetic resonance imaging-derived assessment of cortical thickness (CT). RESULTS: Increased N1 sleep was associated with a higher tau PET signal (ß = 0.009, p = 0.001) and lower CT in the temporal composite region of interest (ß = -0.017, p = 0.007). Decreased slow-wave sleep (SWS) was associated with higher tau burden in the temporal composite (ß = -0.008, p = 0.005) and lower CT (ß = 0.008, p = 0.002), even after controlling for global PiB-PET. DISCUSSION: In CU older adults, lower SWS and higher N1 sleep were associated with higher tau burden and lower CT in brain regions associated with early tau deposition and vulnerable to AD-related neurodegeneration through mechanisms dissociable from amyloid deposition. Highlights: We report the results of an observational study, which leveraged -a well-characterized cohort of healthy aging (Harvard Aging Brain Study) by adding in-home full polysomnograms.By adding at-home polysomnograms to this unique and deeply phenotyped cohort, we examined variations in sleep architecture that are associated with Alzheimer's disease (AD) pathologic changes.Our results confirmed the association of sleep changes with early tau and cortical neurodegenerative changes that were independent of amyloid.The results will be of importance in monitoring sleep-related variations in relation to the natural history of AD pathology and in designing sleep-focused clinical trials.

5.
bioRxiv ; 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38234726

RESUMO

Background: Multiple facets of sleep neurophysiology, including electroencephalography (EEG) metrics such as non-rapid eye movement (NREM) spindles and slow oscillations (SO), are altered in individuals with schizophrenia (SCZ). However, beyond group-level analyses which treat all patients as a unitary set, the extent to which NREM deficits vary among patients is unclear, as are their relationships to other sources of heterogeneity including clinical factors, illness duration and ageing, cognitive profiles and medication regimens. Using newly collected high density sleep EEG data on 103 individuals with SCZ and 68 controls, we first sought to replicate our previously reported (Kozhemiako et. al, 2022) group-level mean differences between patients and controls (original N=130). Then in the combined sample (N=301 including 175 patients), we characterized patient-to-patient variability in NREM neurophysiology. Results: We replicated all group-level mean differences and confirmed the high accuracy of our predictive model (Area Under the ROC Curve, AUC = 0.93 for diagnosis). Compared to controls, patients showed significantly increased between-individual variability across many (26%) sleep metrics, with patterns only partially recapitulating those for group-level mean differences. Although multiple clinical and cognitive factors were associated with NREM metrics including spindle density, collectively they did not account for much of the general increase in patient-to-patient variability. Medication regimen was a greater (albeit still partial) contributor to variability, although original group mean differences persisted after controlling for medications. Some sleep metrics including fast spindle density showed exaggerated age-related effects in SCZ, and patients exhibited older predicted biological ages based on an independent model of ageing and the sleep EEG. Conclusion: We demonstrated robust and replicable alterations in sleep neurophysiology in individuals with SCZ and highlighted distinct patterns of effects contrasting between-group means versus within-group variances. We further documented and controlled for a major effect of medication use, and pointed to greater age-related change in NREM sleep in patients. That increased NREM heterogeneity was not explained by standard clinical or cognitive patient assessments suggests the sleep EEG provides novel, nonredundant information to support the goals of personalized medicine. Collectively, our results point to a spectrum of NREM sleep deficits among SCZ patients that can be measured objectively and at scale, and that may offer a unique window on the etiological and genetic diversity that underlies SCZ risk, treatment response and prognosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA