Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 300(8): 107501, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38944119

RESUMO

L-Fucose (6-deoxy-L-galactose), a monosaccharide abundant in glycolipids and glycoproteins produced by mammalian cells, has been extensively studied for its role in intracellular biosynthesis and recycling of GDP-L-fucose for fucosylation. However, in certain mammalian species, L-fucose is efficiently broken down to pyruvate and lactate in a poorly understood metabolic pathway. In the 1970s, L-fucose dehydrogenase, an enzyme responsible for the initial step of this pathway, was partially purified from pig and rabbit livers and characterized biochemically. However, its molecular identity remained elusive until recently. This study reports the purification, identification, and biochemical characterization of the mammalian L-fucose dehydrogenase. The enzyme was purified from rabbit liver approximately 340-fold. Mass spectrometry analysis of the purified protein preparation identified mammalian hydroxysteroid 17-ß dehydrogenase 14 (HSD17B14) as the sole candidate enzyme. Rabbit and human HSD17B14 were expressed in HEK293T and Escherichia coli, respectively, purified, and demonstrated to catalyze the oxidation of L-fucose to L-fucono-1,5-lactone, as confirmed by mass spectrometry and NMR analysis. Substrate specificity studies revealed that L-fucose is the preferred substrate for both enzymes. The human enzyme exhibited a catalytic efficiency for L-fucose that was 359-fold higher than its efficiency for estradiol. Additionally, recombinant rat HSD17B14 exhibited negligible activity towards L-fucose, consistent with the absence of L-fucose metabolism in this species. The identification of the gene-encoding mammalian L-fucose dehydrogenase provides novel insights into the substrate specificity of enzymes belonging to the 17-ß-hydroxysteroid dehydrogenase family. This discovery also paves the way for unraveling the physiological functions of the L-fucose degradation pathway, which remains enigmatic.


Assuntos
17-Hidroxiesteroide Desidrogenases , Fucose , Animais , Humanos , Coelhos , 17-Hidroxiesteroide Desidrogenases/metabolismo , 17-Hidroxiesteroide Desidrogenases/genética , Desidrogenases de Carboidrato/metabolismo , Desidrogenases de Carboidrato/genética , Desidrogenases de Carboidrato/química , Fucose/metabolismo , Cinética , Fígado/enzimologia , Fígado/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Especificidade por Substrato
2.
Int J Mol Sci ; 25(16)2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39201264

RESUMO

Some species of the Gentianaceae family are a valuable source of secondary metabolites. However, the phytochemical knowledge of some of these species remains insufficient. Therefore, this work focused on the isolation of the two main secondary metabolites in the methanolic extract from a Gentiana capitata cell suspension using preparative HPLC and the determination of their structure using UHPLC-DAD-IT-MS/MS and NMR methods. Their content in the methanolic extract was quantified using a previously validated HPLC method. The toxicity of the extract and two isolated compounds was also tested on the PC-12 cell line. The structures of the main secondary metabolites were identified as isosaponarin and 3,7,8-Trimethoxy-9-oxo-9H-xanthen-1-yl 6-O-ß-D-ribopyranosyl-ß-D-allopyranoside by comparing the UHPLC-DAD-IT-MS/MS and NMR results with the literature data. The content of isosaponarin was determined to be 0.76 ± 0.04%, and the content of 3,7,8-trimethoxy-9-oxo-9H-xanthen-1-yl 6-O-ß-D-ribopyranosyl-ß-D-allopyranoside was found to be 0.31 ± 0.02% in the dry extract. Additionally, a two-fold increase in the viability of the PC-12 cell line was observed compared to the control after treatment with the methanolic extract at a concentration of 500 µg/mL. These results suggest the potential use of G. capitata cell suspension methanolic extract as a new source of isosaponarin and 3,7,8-trimethoxy-9-oxo-9H-xanthen-1-yl 6-O-ß-D-ribopyranosyl-ß-D-allopyranoside, highlighting their lack of toxicity to the PC-12 (rat pheochromocytoma) cell line.


Assuntos
Sobrevivência Celular , Gentiana , Extratos Vegetais , Animais , Ratos , Células PC12 , Sobrevivência Celular/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Gentiana/química , Saponinas/farmacologia , Saponinas/química , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas em Tandem , Espectroscopia de Ressonância Magnética
3.
J Biol Chem ; 298(2): 101573, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35007534

RESUMO

Autophagy is a lysosomal degradation pathway for the removal of damaged and superfluous cytoplasmic material. This is achieved by the sequestration of this cargo material within double-membrane vesicles termed autophagosomes. Autophagosome formation is mediated by the conserved autophagy machinery. In selective autophagy, this machinery including the transmembrane protein Atg9 is recruited to specific cargo material via cargo receptors and the Atg11/FIP200 scaffold protein. The molecular details of the interaction between Atg11 and Atg9 are unclear, and it is still unknown how the recruitment of Atg9 is regulated. Here we employ NMR spectroscopy of the N-terminal disordered domain of Atg9 (Atg9-NTD) to map its interaction with Atg11 revealing that it involves two short peptides both containing a PLF motif. We show that the Atg9-NTD binds to Atg11 with an affinity of about 1 µM and that both PLF motifs contribute to the interaction. Mutation of the PLF motifs abolishes the interaction of the Atg9-NTD with Atg11, reduces the recruitment of Atg9 to the precursor aminopeptidase 1 (prApe1) cargo, and blocks prApe1 transport into the vacuole by the selective autophagy-like cytoplasm-to-vacuole (Cvt) targeting pathway while not affecting bulk autophagy. Our results provide mechanistic insights into the interaction of the Atg11 scaffold with the Atg9 transmembrane protein in selective autophagy and suggest a model where only clustered Atg11 when bound to the prApe1 cargo is able to efficiently recruit Atg9 vesicles.


Assuntos
Proteínas de Saccharomyces cerevisiae , Vacúolos , Aminopeptidases/metabolismo , Autofagia , Proteínas Relacionadas à Autofagia/metabolismo , Citoplasma/metabolismo , Proteínas de Membrana/metabolismo , Transporte Proteico , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo , Proteínas de Transporte Vesicular/metabolismo
4.
Magn Reson Chem ; 61(1): 49-54, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36082753

RESUMO

We report a detailed 1 H NMR and 11 B NMR study of as synthesised Li ( BH 3 NH 2 BH 2 NH 2 BH 3 ) obtained in a novel dry-synthesis method. A combination of 1D and 2D single- and triple-quantum techniques was used for the assignment of all observed signals. Minor side-products and reactants were detected in the product: NH 3 BH 3 , Li ( NH 2 BH 3 ) , Li ( BH 4 ) , and two yet unknown salts containing 7-membered chain anions: ( BH 3 NH 2 BH 2 NH 2 BH 2 NH 2 BH 3 ) - and ( BH ( NH 2 BH 3 ) 3 ) - . We believe the assignment provided within this study might be helpful when analysing the mixtures containing numerous ammonia borane derivatives, which often give overlapping signals that are hard to distinguish.


Assuntos
Boranos , Amônia/química , Ânions , Boranos/química , Espectroscopia de Ressonância Magnética , Lítio/química , Prótons
5.
Biochemistry ; 60(17): 1347-1355, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33876640

RESUMO

Protein phosphorylation is an abundant post-translational modification (PTM) and an essential modulator of protein functionality in living cells. Intrinsically disordered proteins (IDPs) are particular targets of PTM protein kinases due to their involvement in fundamental protein interaction networks. Despite their dynamic nature, IDPs are far from having random-coil conformations but exhibit significant structural heterogeneity. Changes in the molecular environment, most prominently in the form of PTM via phosphorylation, can modulate these structural features. Therefore, how phosphorylation events can alter conformational ensembles of IDPs and their interactions with binding partners is of great interest. Here we study the effects of hyperphosphorylation on the IDP osteopontin (OPN), an extracellular target of the Fam20C kinase. We report a full characterization of the phosphorylation sites of OPN using a combined nuclear magnetic resonance/mass spectrometry approach and provide evidence for an increase in the local flexibility of highly phosphorylated regions and the ensuing overall structural elongation. Our study emphasizes the simultaneous importance of electrostatic and hydrophobic interactions in the formation of compact substates in IDPs and their relevance for molecular recognition events.


Assuntos
Osteopontina/química , Osteopontina/metabolismo , Humanos , Simulação de Dinâmica Molecular , Fosforilação , Conformação Proteica , Dobramento de Proteína
6.
Int J Mol Sci ; 22(7)2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33918425

RESUMO

The results of structural studies on a series of halogen-substituted derivatives of 2-deoxy-D-glucose (2-DG) are reported. 2-DG is an inhibitor of glycolysis, a metabolic pathway crucial for cancer cell proliferation and viral replication in host cells, and interferes with D-glucose and D-mannose metabolism. Thus, 2-DG and its derivatives are considered as potential anticancer and antiviral drugs. X-ray crystallography shows that a halogen atom present at the C2 position in the pyranose ring does not significantly affect its conformation. However, it has a noticeable effect on the crystal structure. Fluorine derivatives exist as a dense 3D framework isostructural with the parent compound, while Cl- and I-derivatives form layered structures. Analysis of the Hirshfeld surface shows formation of hydrogen bonds involving the halogen, yet no indication for the existence of halogen bonds. Density functional theory (DFT) periodic calculations of cohesive and interaction energies (at the B3LYP level of theory) have supported these findings. NMR studies in the solution show that most of the compounds do not display significant differences in their anomeric equilibria, and that pyranose ring puckering is similar to the crystalline state. For 2-deoxy-2-fluoro-D-glucose (2-FG), electrostatic interaction energies between the ligand and protein for several existing structures of pyranose 2-oxidase were also computed. These interactions mostly involve acidic residues of the protein; single amino-acid substitutions have only a minor impact on binding. These studies provide a better understanding of the structural chemistry of halogen-substituted carbohydrates as well as their intermolecular interactions with proteins determining their distinct biological activity.


Assuntos
Desoxiglucose/análogos & derivados , Halogênios/química , Desoxiglucose/metabolismo , Ligantes , Espectroscopia de Ressonância Magnética , Conformação Molecular , Proteínas/metabolismo , Difração de Raios X
7.
Plant Cell ; 29(6): 1184-1195, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28522546

RESUMO

When plant-pathogenic oomycetes infect their hosts, they employ a large arsenal of effector proteins to establish a successful infection. Some effector proteins are secreted and are destined to be translocated and function inside host cells. The largest group of translocated proteins from oomycetes is the RxLR effectors, defined by their conserved N-terminal Arg-Xaa-Leu-Arg (RxLR) motif. However, the precise role of this motif in the host cell translocation process is unclear. Here, detailed biochemical studies of the RxLR effector AVR3a from the potato pathogen Phytophthora infestans are presented. Mass spectrometric analysis revealed that the RxLR sequence of native AVR3a is cleaved off prior to secretion by the pathogen and the N terminus of the mature effector was found likely to be acetylated. High-resolution NMR structure analysis of AVR3a indicates that the RxLR motif is well accessible to potential processing enzymes. Processing and modification of AVR3a is to some extent similar to events occurring with the export element (PEXEL) found in malaria effector proteins from Plasmodium falciparum These findings imply a role for the RxLR motif in the secretion of AVR3a by the pathogen, rather than a direct role in the host cell entry process itself.


Assuntos
Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Phytophthora infestans/metabolismo , Phytophthora infestans/patogenicidade , Solanum tuberosum/microbiologia , Motivos de Aminoácidos/genética , Motivos de Aminoácidos/fisiologia , Proteínas Fúngicas/genética , Espectrometria de Massas , Phytophthora infestans/genética
8.
Chemistry ; 26(15): 3297-3313, 2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-31846102

RESUMO

CdII is a major genotoxic agent that readily displaces ZnII in a multitude of zinc proteins, abrogates redox homeostasis, and deregulates cellular metalloproteome. To date, this displacement has been described mostly for cysteine(Cys)-rich intraprotein binding sites in certain zinc finger domains and metallothioneins. To visualize how a ZnII -to-CdII swap can affect the target protein's status and thus understand the molecular basis of CdII -induced genotoxicity an intermolecular ZnII -binding site from the crucial DNA repair protein Rad50 and its zinc hook domain were examined. By using a length-varied peptide base, ZnII -to-CdII displacement in Rad50's hook domain is demonstrated to alter it in a bimodal fashion: 1) CdII induces around a two-orders-of-magnitude stabilization effect (log K 12 Zn II =20.8 vs. log K 12 Cd II =22.7), which defines an extremely high affinity of a peptide towards a metal ion, and 2) the displacement disrupts the overall assembly of the domain, as shown by NMR spectroscopic and anisotropy decay data. Based on the results, a new model explaining the molecular mechanism of CdII genotoxicity that underlines CdII 's impact on Rad50's dimer stability and quaternary structure that could potentially result in abrogation of the major DNA damage response pathway is proposed.


Assuntos
Cádmio/química , Metalotioneína/química , Zinco/química , Sequência de Aminoácidos , Dano ao DNA , Reparo do DNA , Metalotioneína/metabolismo , Ligação Proteica , Domínios Proteicos , Análise Espectral/métodos , Dedos de Zinco
9.
Methods ; 148: 81-87, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29705209

RESUMO

Intrinsically disordered proteins (IDPs) are getting more and more interest of the scientific community. Nuclear magnetic resonance (NMR) is often a technique of choice for these studies, as it provides atomic-resolution information on structure, dynamics and interactions of IDPs. Nonetheless, NMR spectra of IDPs are typically extraordinary crowded, comparing to those of structured proteins. To overcome this problem, high-dimensional NMR experiments can be used, which allow for a better peak separation. In the present review different aspects of such experiments are discussed, from data acquisition and processing to analysis, focusing on experiments for resonance assignment.


Assuntos
Proteínas Intrinsicamente Desordenadas/análise , Proteínas Intrinsicamente Desordenadas/química , Ressonância Magnética Nuclear Biomolecular/métodos , Conformação Proteica
10.
J Biomol NMR ; 71(2): 101-114, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29948440

RESUMO

The NMR derived translational diffusion coefficients were performed on unlabeled and uniformly labeled 13C,15N human insulin in water, both in neat, with zinc ions only, and in pharmaceutical formulation, containing only m-cresol as phenolic ligand, glycerol and zinc ions. The results show the dominant role of the pH parameter and the concentration on aggregation. The diffusion coefficient Dav was used for monitoring the overall average state of oligomeric ensemble in solution. The analysis of the experimental data of diffusion measurements, using the direct exponential curve resolution algorithm (DECRA) allows suggesting the two main components of the oligomeric ensemble. The 3D HSQC-iDOSY, (diffusion ordered HSQC) experiments performed on 13C, 15N-fully labeled insulin at the two pH values, 4 and 7.5, allow for the first time a more detailed experimental observation of individual components in the ensemble. The discussion involves earlier static and dynamic laser light scattering experiments and recent NMR derived translational diffusion results. The results bring new informations concerning the preparation of pharmaceutical formulation and in particular a role of Zn2+ ions. They also will enable better understanding and unifying the results of studies on insulin misfolding effects performed in solution by diverse physicochemical methods at different pH and concentration.


Assuntos
Insulina/química , Ressonância Magnética Nuclear Biomolecular/métodos , Agregados Proteicos , Difusão , Humanos , Ligantes , Dobramento de Proteína , Zinco/química
11.
J Biol Inorg Chem ; 23(8): 1309-1330, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30264175

RESUMO

Helicobacter pylori HypA (HpHypA) is a metallochaperone necessary for maturation of [Ni,Fe]-hydrogenase and urease, the enzymes required for colonization and survival of H. pylori in the gastric mucosa. HpHypA contains a structural Zn(II) site and a unique Ni(II) binding site at the N-terminus. X-ray absorption spectra suggested that the Zn(II) coordination depends on pH and on the presence of Ni(II). This study was performed to investigate the structural properties of HpHypA as a function of pH and Ni(II) binding, using NMR spectroscopy combined with DFT and molecular dynamics calculations. The solution structure of apo,Zn-HpHypA, containing Zn(II) but devoid of Ni(II), was determined using 2D, 3D and 4D NMR spectroscopy. The structure suggests that a Ni-binding and a Zn-binding domain, joined through a short linker, could undergo mutual reorientation. This flexibility has no physiological effect on acid viability or urease maturation in H. pylori. Atomistic molecular dynamics simulations suggest that Ni(II) binding is important for the conformational stability of the N-terminal helix. NMR chemical shift perturbation analysis indicates that no structural changes occur in the Zn-binding domain upon addition of Ni(II) in the pH 6.3-7.2 range. The structure of the Ni(II) binding site was probed using 1H NMR spectroscopy experiments tailored to reveal hyperfine-shifted signals around the paramagnetic metal ion. On this basis, two possible models were derived using quantum-mechanical DFT calculations. The results provide a comprehensive picture of the Ni(II) mode to HpHypA, important to rationalize, at the molecular level, the functional interactions of this chaperone with its protein partners.


Assuntos
Proteínas de Bactérias/metabolismo , Helicobacter pylori/química , Metalochaperonas/metabolismo , Níquel/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Teoria da Densidade Funcional , Escherichia coli/genética , Glicina/genética , Concentração de Íons de Hidrogênio , Metalochaperonas/química , Metalochaperonas/genética , Modelos Químicos , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Mutação , Níquel/química , Ressonância Magnética Nuclear Biomolecular/métodos , Ligação Proteica , Conformação Proteica em alfa-Hélice , Domínios Proteicos , Zinco/química , Zinco/metabolismo
12.
J Phys Chem A ; 122(39): 7832-7841, 2018 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-30240224

RESUMO

1H NMR and 13C NMR chemical shifts as well as conformation dependent vicinal 1H-1H spin-spin coupling constants for cinchonidine in a dilute C6D12 solution have been measured. These data have been interpreted in detail exploiting the results of the extensive quantum chemistry calculations of molecular geometry and NMR parameters of the molecule, performed using the density functional theory (DFT) B3LYP/6-311++G(2d,p) polarizable continuum model (PCM) level of theory. The experimental values of NMR parameters for cinchonidine have been reproduced very well in terms of parameters calculated for key conformers of this molecule. Simultaneously, the analysis has provided us with a lot of information on conformational equilibrium of cinchonidine in the investigated solution. These findings remain in general agreement with the conclusions of other works, based on NOESY spectra or other physicochemical data. Thus, a careful quantitative interpretation of easily measurable NMR chemical shifts can be an independent and valuable source of structural information even in such complex cases as cinchonidine in solution.

13.
Molecules ; 23(11)2018 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-30360468

RESUMO

The function of the intrinsically disordered Unique domain of the Src family of tyrosine kinases (SFK), where the largest differences between family members are concentrated, remains poorly understood. Recent studies in c-Src have demonstrated that the Unique region forms transient interactions, described as an intramolecular fuzzy complex, with the SH3 domain and suggested that similar complexes could be formed by other SFKs. Src and Lyn are members of a distinct subfamily of SFKs. Lyn is a key player in the immunologic response and exists in two isoforms originating from alternative splicing in the Unique domain. We have used NMR to compare the intramolecular interactions in the two isoforms and found that the alternatively spliced segment interacts specifically with the so-called RT-loop in the SH3 domain and that this interaction is abolished when a polyproline ligand binds to the SH3 domain. These results support the generality of the fuzzy complex formation in distinct subfamilies of SFKs and its physiological role, as the naturally occurring alternative splicing modulates the interactions in this complex.


Assuntos
Domínios e Motivos de Interação entre Proteínas , Domínios de Homologia de src , Quinases da Família src/química , Sequência de Aminoácidos , Humanos , Isoenzimas , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade , Quinases da Família src/genética , Quinases da Família src/metabolismo
14.
J Biol Chem ; 291(6): 2917-30, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26635366

RESUMO

The neutrophil gelatinase-associated lipocalin (NGAL, also known as LCN2) and its cellular receptor (LCN2-R, SLC22A17) are involved in many physiological and pathological processes such as cell differentiation, apoptosis, and inflammation. These pleiotropic functions mainly rely on NGAL's siderophore-mediated iron transport properties. However, the molecular determinants underlying the interaction between NGAL and its cellular receptor remain largely unknown. Here, using solution-state biomolecular NMR in conjunction with other biophysical methods, we show that the N-terminal domain of LCN2-R is a soluble extracellular domain that is intrinsically disordered and interacts with NGAL preferentially in its apo state to form a fuzzy complex. The relatively weak affinity (≈10 µm) between human LCN2-R-NTD and apoNGAL suggests that the N terminus on its own cannot account for the internalization of NGAL by LCN2-R. However, human LCN2-R-NTD could be involved in the fine-tuning of the interaction between NGAL and its cellular receptor or in a biochemical mechanism allowing the receptor to discriminate between apo- and holo-NGAL.


Assuntos
Proteínas de Fase Aguda/química , Lipocalinas/química , Proteínas de Transporte de Cátions Orgânicos/química , Proteínas Proto-Oncogênicas/química , Proteínas de Fase Aguda/genética , Proteínas de Fase Aguda/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Humanos , Lipocalina-2 , Lipocalinas/genética , Lipocalinas/metabolismo , Camundongos , Ressonância Magnética Nuclear Biomolecular , Proteínas de Transporte de Cátions Orgânicos/genética , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo
15.
J Am Chem Soc ; 139(3): 1168-1176, 2017 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-28085263

RESUMO

Many neurodegenerative diseases are characterized by misfolding and aggregation of an expanded polyglutamine tract (polyQ). Huntington's Disease, caused by expansion of the polyQ tract in exon 1 of the Huntingtin protein (Htt), is associated with aggregation and neuronal toxicity. Despite recent structural progress in understanding the structures of amyloid fibrils, little is known about the solution states of Htt in general, and about molecular details of their transition from soluble to aggregation-prone conformations in particular. This is an important question, given the increasing realization that toxicity may reside in soluble conformers. This study presents an approach that combines NMR with computational methods to elucidate the structural conformations of Htt Exon 1 in solution. Of particular focus was Htt's N17 domain sited N-terminal to the polyQ tract, which is key to enhancing aggregation and modulate Htt toxicity. Such in-depth structural study of Htt presents a number of unique challenges: the long homopolymeric polyQ tract contains nearly identical residues, exon 1 displays a high degree of conformational flexibility leading to a scaling of the NMR chemical shift dispersion, and a large portion of the backbone amide groups are solvent-exposed leading to fast hydrogen exchange and causing extensive line broadening. To deal with these problems, NMR assignment was achieved on a minimal Htt exon 1, comprising the N17 domain, a polyQ tract of 17 glutamines, and a short hexameric polyProline region that does not contribute to the spectrum. A pH titration method enhanced this polypeptide's solubility and, with the aid of ≤5D NMR, permitted the full assignment of N17 and the entire polyQ tract. Structural predictions were then derived using the experimental chemical shifts of the Htt peptide at low and neutral pH, together with various different computational approaches. All these methods concurred in indicating that low-pH protonation stabilizes a soluble conformation where a helical region of N17 propagates into the polyQ region, while at neutral pH both N17 and the polyQ become largely unstructured-thereby suggesting a mechanism for how N17 regulates Htt aggregation.


Assuntos
Proteína Huntingtina/química , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Humanos , Concentração de Íons de Hidrogênio , Conformação Proteica , Temperatura
16.
J Biomol NMR ; 68(2): 155-161, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28508110

RESUMO

NMR relaxometry plays crucial role in studies of protein dynamics. The measurement of longitudinal and transverse relaxation rates of [Formula: see text]N is the main source of information on backbone motions. However, even the most basic approach exploiting a series of [Formula: see text]N HSQC spectra can require several hours of measurement time. Standard non-uniform sampling (NUS), i.e. random under-sampling of indirect time domain, typically cannot reduce this by more than 2-4[Formula: see text] due to relatively low "compressibility" of these spectra. In this paper we propose an extension of NUS to relaxation delays. The two-dimensional space of [Formula: see text]/[Formula: see text] is sampled in a way similar to NUS of [Formula: see text]/[Formula: see text] domain in 3D spectra. The signal is also processed in a way similar to that known from 3D NUS spectra i.e. using one of the most popular compressed sensing algorithms, iterative soft thresholding. The 2D Fourier transform matrix is replaced with mixed inverse Laplace-Fourier transform matrix. The peak positions in resulting 3D spectrum are characterized by two frequency coordinates and relaxation rate and thus no additional fitting of exponential curves is required. The method is tested on three globular proteins, providing satisfactory results in a time corresponding to acquisition of two conventional [Formula: see text]N HSQC spectra.


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/química , Análise de Fourier , Humanos , Marcação por Isótopo , Fatores de Tempo , Ubiquitina/química , Domínios de Homologia de src
17.
J Biomol NMR ; 68(2): 129-138, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28243768

RESUMO

A method for five-dimensional spectral reconstruction of non-uniformly sampled NMR data sets is proposed. It is derived from the previously published signal separation algorithm, with major alterations to avoid unfeasible processing of an entire five-dimensional spectrum. The proposed method allows credible reconstruction of spectra from as little as a few hundred data points and enables sensitive resonance detection in experiments with a high dynamic range of peak intensities. The efficiency of the method is demonstrated on two high-resolution spectra for rapid sequential assignment of intrinsically disordered proteins, namely 5D HN(CA)CONH and 5D (HACA)CON(CO)CONH.


Assuntos
Algoritmos , Proteínas Intrinsicamente Desordenadas/química , Ressonância Magnética Nuclear Biomolecular/métodos , Isótopos de Carbono , Humanos , Isótopos de Nitrogênio , Razão Sinal-Ruído , alfa-Sinucleína/química
18.
J Biomol NMR ; 64(1): 27-37, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26614488

RESUMO

Nuclear magnetic resonance spectroscopy (NMR) can provide a great deal of information about structure and dynamics of biomolecules. The quality of an NMR structure strongly depends on the number of experimental observables and on their accurate conversion into geometric restraints. When distance restraints are derived from nuclear Overhauser effect spectroscopy (NOESY), stereo-specific assignments of prochiral atoms can contribute significantly to the accuracy of NMR structures of proteins and nucleic acids. Here we introduce a series of NOESY-based pulse sequences that can assist in the assignment of chiral CHD methylene protons in random fractionally deuterated proteins. Partial deuteration suppresses spin-diffusion between the two protons of CH2 groups that normally impedes the distinction of cross-relaxation networks for these two protons in NOESY spectra. Three and four-dimensional spectra allow one to distinguish cross-relaxation pathways involving either of the two methylene protons so that one can obtain stereospecific assignments. In addition, the analysis provides a large number of stereospecific distance restraints. Non-uniform sampling was used to ensure optimal signal resolution in 4D spectra and reduce ambiguities of the assignments. Automatic assignment procedures were modified for efficient and accurate stereospecific assignments during automated structure calculations based on 3D spectra. The protocol was applied to calcium-loaded calbindin D9k. A large number of stereospecific assignments lead to a significant improvement of the accuracy of the structure.


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/química , Modelos Moleculares , Conformação Molecular , Proteína G de Ligação ao Cálcio S100/química
19.
J Biomol NMR ; 65(3-4): 193-203, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27430223

RESUMO

New experiments dedicated for large IDPs backbone resonance assignment are presented. The most distinctive feature of all described techniques is the employment of MOCCA-XY16 mixing sequences to obtain effective magnetization transfers between carbonyl carbon backbone nuclei. The proposed 4 and 5 dimensional experiments provide a high dispersion of obtained signals making them suitable for use in the case of large IDPs (application to 354 a. a. residues of Tau protein 3x isoform is presented) as well as provide both forward and backward connectivities. What is more, connecting short chains interrupted with proline residues is also possible. All the experiments employ non-uniform sampling.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Espectroscopia de Ressonância Magnética , Sequência de Aminoácidos , Espectroscopia de Ressonância Magnética/métodos , Ressonância Magnética Nuclear Biomolecular/métodos , Isoformas de Proteínas , alfa-Sinucleína/química , Proteínas tau/química
20.
J Biomol NMR ; 64(3): 239-53, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26891900

RESUMO

Resonance assignment is a prerequisite for almost any NMR-based study of proteins. It can be very challenging in some cases, however, due to the nature of the protein under investigation. This is the case with intrinsically disordered proteins, for example, whose NMR spectra suffer from low chemical shifts dispersion and generally low resolution. For these systems, sequence specific assignment is highly time-consuming, so the prospect of using automatic strategies for their assignment is very attractive. In this article we present a new version of the automatic assignment program TSAR dedicated to intrinsically disordered proteins. In particular, we demonstrate how the automatic procedure can be improved by incorporating methods for amino acid recognition and information on chemical shifts in selected amino acids. The approach was tested in silico on 16 disordered proteins and experimentally on α-synuclein, with remarkably good results.


Assuntos
Aminoácidos/química , Proteínas Intrinsicamente Desordenadas/química , Ressonância Magnética Nuclear Biomolecular , Ressonância Magnética Nuclear Biomolecular/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA