Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Nanotechnology ; 33(15)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-34972096

RESUMO

Properties of van der Waals (vdW) heterostructures strongly depend on the quality of the interface between two dimensional (2D) layers. Instead of having atomically flat, clean, and chemically inert interfaces without dangling bonds, top-down vdW heterostructures are associated with bubbles and intercalated layers (ILs) which trap contaminations appeared during fabrication process. We investigate their influence on local electrical and mechanical properties of MoS2/WS2heterostructures using atomic force microscopy (AFM) based methods. It is demonstrated that domains containing bubbles and ILs are locally softer, with increased friction and energy dissipation. Since they prevent sharp interfaces and efficient charge transfer between 2D layers, electrical current and contact potential difference are strongly decreased. In order to reestablish a close contact between MoS2and WS2layers, vdW heterostructures were locally flattened by scanning with AFM tip in contact mode or just locally pressed with an increased normal load. Subsequent electrical measurements reveal that the contact potential difference between two layers strongly increases due to enabled charge transfer, while localI/Vcurves exhibit increased conductivity without undesired potential barriers.

2.
Phys Rev Lett ; 125(12): 126802, 2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-33016747

RESUMO

This work demonstrates significant line narrowing of a surface multipole plasmon (MP) by modifying the surface electronic wave function with two-dimensional materials (2DMs): graphene and hexagonal boron nitride. This is found in an optical reflectivity of alkali atoms (Cs or K) on an Ir(111) surface covered with the 2DMs. The reduction in reflectivity induced by deposition of the alkali atoms becomes as large as 20% at ∼2 eV, which is ascribed to a MP of a composite of alkali/2DM/alkali/Ir multilayer structure. The linewidth of the MP band becomes as narrow as 0.2 eV by the presence of the 2DM between the two alkali layers. A numerical simulation by time-dependent density functional theory with a jellium model reveals that the density of states of the surface localized state is sharpened remarkably by the 2DMs that decouple the outermost alkali layer from the Ir bulk. Consequently, a local field enhancement of an order of 10^{5} is achieved by ultimate confinement of the MP within the outermost alkali layer. This work leads to a novel strategy for reducing plasmon dissipation in an atomically thin layer via atomic scale modification of surface structure.

3.
Nanotechnology ; 29(30): 305703, 2018 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-29726400

RESUMO

MoS2 monolayer samples were synthesized on a SiO2/Si wafer and transferred to Ir(111) for nano-scale characterization. The samples were extensively characterized during every step of the transfer process, and MoS2 on the final substrate was examined down to the atomic level by scanning tunneling microscopy (STM). The procedures conducted yielded high-quality monolayer MoS2 of milimeter-scale size with an average defect density of 2 × 1013 cm-2. The lift-off from the growth substrate was followed by a release of the tensile strain, visible in a widening of the optical band gap measured by photoluminescence. Subsequent transfer to the Ir(111) surface led to a strong drop of this optical signal but without further shifts of characteristic peaks. The electronic band gap was measured by scanning tunneling spectroscopy (STS), revealing n-doping and lateral nano-scale variations. The combined use of STM imaging and density functional theory (DFT) calculations allows us to identify the most recurring point-like defects as S vacancies.

4.
Phys Rev Lett ; 118(11): 116401, 2017 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-28368636

RESUMO

We present direct experimental evidence of broken chirality in graphene by analyzing electron scattering processes at energies ranging from the linear (Dirac-like) to the strongly trigonally warped region. Furthermore, we are able to measure the energy of the van Hove singularity at the M point of the conduction band. Our data show a very good agreement with theoretical calculations for free-standing graphene. We identify a new intravalley scattering channel activated in case of a strongly trigonally warped constant energy contour, which is not suppressed by chirality. Finally, we compare our experimental findings with T-matrix simulations with and without the presence of a pseudomagnetic field and suggest that higher order electron hopping effects are a key factor in breaking the chirality near to the van Hove singularity.

5.
Nano Lett ; 13(11): 5013-9, 2013 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-24131290

RESUMO

The ease by which graphene is affected through contact with other materials is one of its unique features and defines an integral part of its potential for applications. Here, it will be demonstrated that intercalation, the insertion of atomic layers in between the backside of graphene and the supporting substrate, is an efficient tool to change its interaction with the environment on the frontside. By partial intercalation of graphene on Ir(111) with Eu or Cs we induce strongly n-doped graphene patches through the contact with these intercalants. They coexist with nonintercalated, slightly p-doped graphene patches. We employ these backside doping patterns to directly visualize doping induced binding energy differences of ionic adsorbates to graphene through low-temperature scanning tunneling microscopy. Density functional theory confirms these binding energy differences and shows that they are related to the graphene doping level.

6.
ACS Appl Mater Interfaces ; 16(12): 15596-15604, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38500411

RESUMO

In this study, we show a direct correlation between the applied mechanical strain and an increase in monolayer MoS2 photoresponsivity. This shows that tensile strain can improve the efficiency of monolayer MoS2 photodetectors. The observed high photocurrent and extended response time in our devices are indicative that devices are predominantly governed by photogating mechanisms, which become more prominent with applied tensile strain. Furthermore, we have demonstrated that a nonencapsulated MoS2 monolayer can be used in strain-based devices for many cycles and extensive periods of time, showing endurance under ambient conditions without loss of functionality. Such robustness emphasizes the potential of MoS2 for further functionalization and utilization of different flexible sensors.

7.
Phys Rev Lett ; 111(5): 056804, 2013 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-23952430

RESUMO

Free-electron-like image potential states are observed in scanning tunneling spectroscopy on graphene quantum dots on Ir(111) acting as potential wells. The spectrum strongly depends on the size of the nanostructure as well as on the spatial position on top, indicating lateral confinement. Analysis of the substructure of the first state by the spatial mapping of the constant energy local density of states reveals characteristic patterns of confined states. The most pronounced state is not the ground state, but an excited state with a favorable combination of the local density of states and parallel momentum transfer in the tunneling process. Chemical gating tunes the confining potential by changing the local work function. Our experimental determination of this work function allows us to deduce the associated shift of the Dirac point.


Assuntos
Grafite/química , Microscopia de Tunelamento/instrumentação , Microscopia de Tunelamento/métodos , Modelos Teóricos , Pontos Quânticos , Tamanho da Partícula , Termodinâmica
8.
Nanoscale Horiz ; 9(1): 44-92, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37902087

RESUMO

The near-atomic thickness and organic molecular systems, including organic semiconductors and polymer-enabled hybrid heterostructures, of two-dimensional transition metal dichalcogenides (2D-TMDs) can modulate their optoelectronic and transport properties outstandingly. In this review, the current understanding and mechanism of the most recent and significant breakthrough of novel interlayer exciton emission and its modulation by harnessing the band energy alignment between TMDs and organic semiconductors in a TMD/organic (TMDO) hybrid heterostructure are demonstrated. The review encompasses up-to-date device demonstrations, including field-effect transistors, detectors, phototransistors, and photo-switchable superlattices. An exploration of distinct traits in 2D-TMDs and organic semiconductors delves into the applications of TMDO hybrid heterostructures. This review provides insights into the synthesis of 2D-TMDs and organic layers, covering fabrication techniques and challenges. Band bending and charge transfer via band energy alignment are explored from both structural and molecular orbital perspectives. The progress in emission modulation, including charge transfer, energy transfer, doping, defect healing, and phase engineering, is presented. The recent advancements in 2D-TMDO-based optoelectronic synaptic devices, including various 2D-TMDs and organic materials for neuromorphic applications are discussed. The section assesses their compatibility for synaptic devices, revisits the operating principles, and highlights the recent device demonstrations. Existing challenges and potential solutions are discussed. Finally, the review concludes by outlining the current challenges that span from synthesis intricacies to device applications, and by offering an outlook on the evolving field of emerging TMDO heterostructures.

9.
Artigo em Inglês | MEDLINE | ID: mdl-38041641

RESUMO

A complex interplay between the crystal structure and the electron behavior within borophene renders this material an intriguing 2D system, with many of its electronic properties still undiscovered. Experimental insight into those properties is additionally hampered by the limited capabilities of the established synthesis methods, which, in turn, inhibits the realization of potential borophene applications. In this multimethod study, photoemission spectroscopies and scanning probe techniques complemented by theoretical calculations have been used to investigate the electronic characteristics of a high-coverage, single-layer borophene on the Ir(111) substrate. Our results show that the binding of borophene to Ir(111) exhibits pronounced one-dimensional modulation and transforms borophene into a nanograting. The scattering of photoelectrons from this structural grating gives rise to the replication of the electronic bands. In addition, the binding modulation is reflected in the chemical reactivity of borophene and gives rise to its inhomogeneous aging effect. Such aging is easily reset by dissolving boron atoms in iridium at high temperature, followed by their reassembly into a fresh atomically thin borophene mesh. Besides proving electron-grating capabilities of the boron monolayer, our data provide comprehensive insight into the electronic properties of epitaxial borophene which is vital for further examination of other boron systems of reduced dimensionality.

10.
J Phys Condens Matter ; 34(30)2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35533658

RESUMO

The detection of drugs containing hydrochloric salt with conventional methods is time consuming and expensive. In this work, upon exposure to ciprofloxacin hydrochloride at different concentrations, the emission from CsPbBr3NCs shifts to the blue from 513 nm to 442 nm. CsPbBr(3-x)ClxNCs are formed by the ion exchange and substitution of Br-and Cl-ions from surface to core of NCs. The first-principles calculations suggest that the substitution of Br-by Cl-ions plays a critical role in the tuning of the energy bandgap. The color of paper test strips changes immediately after exposure to different Ciproxan solutions. We propose that this rapid and portable method has a high potential application in other chloride salts for food safety.


Assuntos
Brometos , Nanopartículas , Compostos de Cálcio , Césio , Ciprofloxacina , Colorimetria , Chumbo , Óxidos , Titânio
11.
ACS Appl Mater Interfaces ; 14(18): 21727-21737, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35500044

RESUMO

A major challenge in the investigation of all 2D materials is the development of synthesis protocols and tools which would enable their large-scale production and effective manipulation. The same holds for borophene, where experiments are still largely limited to in situ characterizations of small-area samples. In contrast, our work is based on millimeter-sized borophene sheets, synthesized on an Ir(111) surface in ultrahigh vacuum. Besides high-quality macroscopic synthesis, as confirmed by low-energy electron diffraction (LEED) and atomic force microscopy (AFM), we also demonstrate a successful transfer of borophene from Ir to a Si wafer via electrochemical delamination process. Comparative Raman spectroscopy, in combination with the density functional theory (DFT) calculations, proved that borophene's crystal structure has been preserved in the transfer. Our results demonstrate successful growth and manipulation of large-scale, single-layer borophene sheets with minor defects and ambient stability, thus expediting borophene implementation into more complex systems and devices.

12.
ACS Appl Mater Interfaces ; 13(42): 50552-50563, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34661383

RESUMO

Growth of 2D materials under ultrahigh-vacuum (UHV) conditions allows for an in situ characterization of samples with direct spectroscopic insight. Heteroepitaxy of transition-metal dichalcogenides (TMDs) in UHV remains a challenge for integration of several different monolayers into new functional systems. In this work, we epitaxially grow lateral WS2-MoS2 and vertical WS2/MoS2 heterostructures on graphene. By means of scanning tunneling spectroscopy (STS), we first examined the electronic structure of monolayer MoS2, WS2, and WS2/MoS2 vertical heterostructure. Moreover, we investigate a band bending in the vicinity of the narrow one-dimensional (1D) interface of the WS2-MoS2 lateral heterostructure and mirror twin boundary (MTB) in the WS2/MoS2 vertical heterostructure. Density functional theory (DFT) is used for the calculation of the band structures, as well as for the density of states (DOS) maps at the interfaces. For the WS2-MoS2 lateral heterostructure, we confirm type-II band alignment and determine the corresponding depletion regions, charge densities, and the electric field at the interface. For the MTB, we observe a symmetric upward bend bending and relate it to the dielectric screening of graphene affecting dominantly the MoS2 layer. Quasi-freestanding heterostructures with sharp interfaces, large built-in electric field, and narrow depletion region widths are proper candidates for future designing of electronic and optoelectronic devices.

13.
ACS Nano ; 15(8): 13516-13525, 2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34296863

RESUMO

We prepared monolayers of tantalum sulfide on Au(111) by evaporation of Ta in a reactive background of H2S. Under sulfur-rich conditions, monolayers of 2H-TaS2 formed, whereas under sulfur-poor conditions TaS2-x with 0 ≤ x ≤ 1 were found. We identified this phase as TaS, a structure that can be derived from 2H-TaS2 by removal of the bottom S layer.

14.
Materials (Basel) ; 14(8)2021 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-33920388

RESUMO

Both silicon and graphite are radiation hard materials with respect to swift heavy ions like fission fragments and cosmic rays. Recrystallisation is considered to be the main mechanism of prompt damage anneal in these two materials, resulting in negligible amounts of damage produced, even when exposed to high ion fluences. In this work we present evidence that these two materials could be susceptible to swift heavy ion irradiation effects even at low energies. In the case of silicon, ion channeling and electron microscopy measurements reveal significant recovery of pre-existing defects when exposed to a swift heavy ion beam. In the case of graphite, by using ion channeling, Raman spectroscopy and atomic force microscopy, we found that the surface of the material is more prone to irradiation damage than the bulk.

15.
J Phys Chem Lett ; 11(13): 5248-5254, 2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32551650

RESUMO

In this work, an ultrafast spectral diffusion of the lowest exciton in a tetracene ultrathin film is studied by two-dimensional electronic spectroscopy. From the analysis of the nodal line slope, the frequency-fluctuation correlation function (FFCF) of the exciton band is extracted. The FFCF contains two components with decay times of 400 and 80 fs; while the former can be understood by a linear exciton-phonon coupling model, the latter shows an order of magnitude increase in its amplitude from 96 to 186 K that cannot be explained by the same model. A novel scheme of the energy-gap fluctuations is examined, in which an intramolecular high-frequency mode causes the spectral diffusion that is enhanced through an anharmonic coupling to low-frequency phonon modes. This finding provides a valuable input for future theoretical predictions on the ultrafast nonadiabatic dynamics of the molecular exciton.

16.
ACS Nano ; 14(10): 13629-13637, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-32910634

RESUMO

Cluster superlattice membranes consist of a two-dimensional hexagonal lattice of similar-sized nanoclusters sandwiched between single-crystal graphene and an amorphous carbon matrix. The fabrication process involves three main steps, the templated self-organization of a metal cluster superlattice on epitaxial graphene on Ir(111), conformal embedding in an amorphous carbon matrix, and subsequent lift-off from the Ir(111) substrate. The mechanical stability provided by the carbon-graphene matrix makes the membrane stable as a free-standing material and enables transfer to other substrates. The fabrication procedure can be applied to a wide variety of cluster materials and cluster sizes from the single-atom limit to clusters of a few hundred atoms, as well as other two-dimensional layer/host matrix combinations. The versatility of the membrane composition, its mechanical stability, and the simplicity of the transfer procedure make cluster superlattice membranes a promising material in catalysis, magnetism, energy conversion, and optoelectronics.

17.
Beilstein J Nanotechnol ; 9: 109-118, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29441256

RESUMO

Using a Landau-de Gennes approach, we study the impact of confinement topology, geometry and external fields on the spatial positioning of nematic topological defects (TDs). In quasi two-dimensional systems we demonstrate that a confinement-enforced total topological charge of m > 1/2 decays into elementary TDs bearing a charge of m = 1/2. These assemble close to the bounding substrate to enable essentially bulk-like uniform nematic ordering in the central part of a system. This effect is reminiscent of the Faraday cavity phenomenon in electrostatics. We observe that in certain confinement geometries, varying the correlation length size of the order parameter could trigger a global rotation of an assembly of TDs. Finally, we show that an external electric field could be used to drag the boojum fingertip towards the interior of the confinement cell. Assemblies of TDs could be exploited as traps for appropriate nanoparticles, opening several opportunities for the development of functional nanodevices.

18.
Acta Orthop ; 76(6): 833-40, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16470438

RESUMO

BACKGROUND: The Bernese periacetabular osteotomy is used in dysplastic hips to increase the load-bearing area of the hip and to prevent osteoarthritis. The aim of our work was to determine the contact hip stress before and after the osteotomy and to compare the relief of stress with the long-term radiographic and clinical outcome. PATIENTS AND METHODS: We followed 26 dysplastic hips (26 patients) for 7-15 years after the index operation. Clinical evaluation was based on the WOMAC score, osteoarthrosis was evaluated with the Tönnis classification, the angles of lateral (CE) and anterior (VCA) femoral coverage were measured, and biomechanical parameters were studied. RESULTS: Periacetabular osteotomy increased the mean CE from 15 degrees to 37 degrees , and the mean VCA from 22 degrees to 38 degrees . The mean normalized peak contact stress was reduced from 5.2 to 3.0 kPa/N. Four hips required total hip arthroplasty after an average of 4.5 years, 8 hips showed considerable arthrosis progression, and 14 hips had no or mild arthrosis at follow-up. Preoperative WOMAC score, preoperative Tönnis grade and postoperative normalized peak contact stress were the most important predictors of outcome. INTERPRETATION: The Bernese periacetabular osteotomy improves the mechanical status of the hip. Long-term success depends on the grade of arthrosis preoperatively and on the magnitude of operative correction of the contact hip stress.


Assuntos
Acetábulo/cirurgia , Luxação do Quadril/cirurgia , Osteotomia/métodos , Acetábulo/diagnóstico por imagem , Acetábulo/fisiopatologia , Adolescente , Adulto , Fenômenos Biomecânicos , Feminino , Seguimentos , Luxação Congênita de Quadril/cirurgia , Humanos , Masculino , Pessoa de Meia-Idade , Osteoartrite do Quadril/diagnóstico , Osteoartrite do Quadril/prevenção & controle , Radiografia , Estudos Retrospectivos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA