Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Environ Microbiol ; 24(2): 967-980, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34110072

RESUMO

Throughout the Negev Desert highlands, thousands of ancient petroglyphs sites are susceptible to deterioration processes that may result in the loss of this unique rock art. Therefore, the overarching goal of the current study was to characterize the composition, diversity and effects of microbial colonization of the rocks to find ways of protecting these unique treasures. The spatial organization of the microbial colonizers and their relationships with the lithic substrate were analysed using scanning electron microscopy. This approach revealed extensive epilithic and endolithic colonization and close microbial-mineral interactions. Shotgun sequencing analysis revealed various taxa from the archaea, bacteria and some eukaryotes. Metagenomic coding sequences (CDS) of these microbial lithobionts exhibited specific metabolic pathways involved in the rock elements' cycles and uptake processes. Thus, our results provide evidence for the potential participation of the microorganisms colonizing these rocks during different solubilization and mineralization processes. These damaging actions may contribute to the deterioration of this extraordinary rock art and thus threaten this valuable heritage. Shotgun metagenomic sequencing, in conjunction with the in situ scanning electron microscopy study, can thus be considered an effective strategy to understand the complexity of the weathering processes occurring at petroglyph sites and other cultural heritage assets.


Assuntos
Bactérias , Metagenômica , Israel , Microscopia Eletrônica de Varredura
2.
Int J Mol Sci ; 22(18)2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34576027

RESUMO

Despite having been tagged as safe and beneficial, recent evidence remains inconclusive regarding the status of artificial sweeteners and their putative effects on gut microbiota. Gut microorganisms are essential for the normal metabolic functions of their host. These microorganisms communicate within their community and regulate group behaviors via a molecular system termed quorum sensing (QS). In the present study, we aimed to study the effects of artificial sweeteners on this bacterial communication system. Using biosensor assays, biophysical protein characterization methods, microscale thermophoresis, swarming motility assays, growth assays, as well as molecular docking, we show that aspartame, sucralose, and saccharin have significant inhibitory actions on the Gram-negative bacteria N-acyl homoserine lactone-based (AHL) communication system. Our studies indicate that these three artificial sweeteners are not bactericidal. Protein-ligand docking and interaction profiling, using LasR as a representative participating receptor for AHL, suggest that the artificial sweeteners bind to the ligand-binding pocket of the protein, possibly interfering with the proper housing of the native ligand and thus impeding protein folding. Our findings suggest that these artificial sweeteners may affect the balance of the gut microbial community via QS-inhibition. We, therefore, infer an effect of these artificial sweeteners on numerous molecular events that are at the core of intestinal microbial function, and by extension on the host metabolism.


Assuntos
Proteínas de Bactérias/genética , Microbioma Gastrointestinal/efeitos dos fármacos , Percepção de Quorum/efeitos dos fármacos , Edulcorantes/efeitos adversos , Transativadores/genética , Aspartame/efeitos adversos , Técnicas Biossensoriais/métodos , Hidrolases de Éster Carboxílico/genética , Comunicação Celular/efeitos dos fármacos , Microbioma Gastrointestinal/genética , Bactérias Gram-Negativas/efeitos dos fármacos , Humanos , Simulação de Acoplamento Molecular , Sacarina/efeitos adversos , Sacarose/efeitos adversos , Sacarose/análogos & derivados , Edulcorantes/farmacologia
3.
Molecules ; 26(6)2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33803983

RESUMO

Quorum sensing (QS), a sophisticated system of bacterial communication that depends on population density, is employed by many pathogenic bacteria to regulate virulence. In view of the current reality of antibiotic resistance, it is expected that interfering with QS can address bacterial pathogenicity without stimulating the incidence of resistance. Thus, harnessing QS inhibitors has been considered a promising approach to overriding bacterial infections and combating antibiotic resistance that has become a major threat to public healthcare around the globe. Pseudomonas aeruginosa is one of the most frequent multidrug-resistant bacteria that utilize QS to control virulence. Many natural compounds, including furanones, have demonstrated strong inhibitory effects on several pathogens via blocking or attenuating QS. While the natural furanones show no activity against P. aeruginosa, furanone C-30, a brominated derivative of natural furanone compounds, has been reported to be a potent inhibitor of the QS system of the notorious opportunistic pathogen. In the present study, we assess the molecular targets and mode of action of furanone C-30 on P. aeruginosa QS system. Our results suggest that furanone C-30 binds to LasR at the ligand-binding site but fails to establish interactions with the residues crucial for the protein's productive conformational changes and folding, thus rendering the protein dysfunctional. We also show that furanone C-30 inhibits RhlR, independent of LasR, suggesting a complex mechanism for the agent beyond what is known to date.


Assuntos
Antibacterianos/farmacologia , Furanos/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Percepção de Quorum/efeitos dos fármacos , Proteínas de Bactérias/metabolismo , Biofilmes/efeitos dos fármacos , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Pseudomonas aeruginosa/metabolismo , Virulência/efeitos dos fármacos
4.
Proc Natl Acad Sci U S A ; 112(7): 2082-6, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25646434

RESUMO

Certain stony corals can alternate between a calcifying colonial form and noncalcifying solitary polyps, supporting the hypothesis that corals have survived through geologic timescale periods of unfavorable calcification conditions. However, the mechanisms enabling this biological plasticity are yet to be identified. Here we show that incubation of two coral species (Pocillopora damicornis and Oculina patagonica) under reduced pH conditions (pH 7.2) simulating past ocean acidification induce tissue-specific apoptosis that leads to the dissociation of polyps from coenosarcs. This in turn leads to the breakdown of the coenosarc and, as a consequence, to loss of coloniality. Our data show that apoptosis is initiated in the polyps and that once dissociation between polyp and coenosarc terminates, apoptosis subsides. After reexposure of the resulting solitary polyps to normal pH (pH 8.2), both coral species regenerated coenosarc tissues and resumed calcification. These results indicate that regulation of coloniality is under the control of the polyp, the basic modular unit of the colony. A mechanistic explanation for several key evolutionarily important phenomena that occurred throughout coral evolution is proposed, including mechanisms that permitted species to survive the third tier of mass extinctions.


Assuntos
Antozoários , Apoptose , Concentração de Íons de Hidrogênio , Animais , Antozoários/citologia , Antozoários/ultraestrutura , Microscopia Eletrônica de Transmissão
5.
Biofouling ; 33(1): 1-13, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27882771

RESUMO

Quorum sensing (QS), a cell-to-cell communication process, entails the production of signaling molecules that enable synchronized gene expression in microbial communities to regulate myriad microbial functions, including biofilm formation. QS disruption may constitute an innovative approach to the design of novel antifouling and anti-biofilm agents. To identify novel quorum sensing inhibitors (QSI), 2,500 environmental bacterial artificial chromosomes (BAC) from uncultured marine planktonic bacteria were screened for QSI activity using soft agar overlaid with wild type Chromobacterium violaceum as an indicator. Of the BAC library clones, 7% showed high QSI activity (>40%) against the indicator bacterium, suggesting that QSI is common in the marine environment. The most active compound, eluted from BAC clone 14-A5, disrupted QS signaling pathways and reduced biofilm formation in both Pseudomonas aeruginosa and Acinetobacter baumannii. The mass spectra of the active BAC clone (14-A5) that had been visualized by thin layer chromatography was dominated by a m/z peak of 362.1.


Assuntos
Acinetobacter baumannii/fisiologia , Biofilmes/crescimento & desenvolvimento , Cromossomos Artificiais Bacterianos , Metagenômica/métodos , Pseudomonas aeruginosa/fisiologia , Percepção de Quorum , Acinetobacter baumannii/genética , Cromatografia em Camada Fina , Chromobacterium/genética , Chromobacterium/fisiologia , Pseudomonas aeruginosa/genética , Percepção de Quorum/efeitos dos fármacos , Percepção de Quorum/genética
6.
Proc Natl Acad Sci U S A ; 111(37): 13391-6, 2014 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-25192936

RESUMO

The exchange of nutrients and dissolved gasses between corals and their environment is a critical determinant of the growth of coral colonies and the productivity of coral reefs. To date, this exchange has been assumed to be limited by molecular diffusion through an unstirred boundary layer extending 1-2 mm from the coral surface, with corals relying solely on external flow to overcome this limitation. Here, we present direct microscopic evidence that, instead, corals can actively enhance mass transport through strong vortical flows driven by motile epidermal cilia covering their entire surface. Ciliary beating produces quasi-steady arrays of counterrotating vortices that vigorously stir a layer of water extending up to 2 mm from the coral surface. We show that, under low ambient flow velocities, these vortices, rather than molecular diffusion, control the exchange of nutrients and oxygen between the coral and its environment, enhancing mass transfer rates by up to 400%. This ability of corals to stir their boundary layer changes the way that we perceive the microenvironment of coral surfaces, revealing an active mechanism complementing the passive enhancement of transport by ambient flow. These findings extend our understanding of mass transport processes in reef corals and may shed new light on the evolutionary success of corals and coral reefs.


Assuntos
Antozoários/fisiologia , Cílios/fisiologia , Recifes de Corais , Reologia , Animais , Evolução Biológica , Transporte Biológico , Difusão , Epiderme/fisiologia , Oxigênio/metabolismo
7.
Dis Aquat Organ ; 118(1): 77-89, 2016 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-26865237

RESUMO

The etiology of black band disease (BBD), a persistent, globally distributed coral disease characterized by a dark microbial mat, is still unclear. A metatranscriptomics approach was used to unravel the roles of the major mat constituents in the disease process. By comparing the transcriptomes of the mat constituents with those of the surface microbiota of diseased and healthy corals, we showed a shift in bacterial composition and function in BBD-affected corals. mRNA reads of Cyanobacteria, Bacteroidetes and Firmicutes phyla were prominent in the BBD mat. Cyanobacterial adenosylhomocysteinase, involved in cyanotoxin production, was the most transcribed gene in the band consortium. Pathogenic and non-pathogenic forms of Vibrio spp., mainly transcribing the thiamine ABC transporter, were abundant and highly active in both the band and surface tissues. Desulfovibrio desulfuricans was the primary producer of sulfide in the band. Members of the Bacilli class expressed high levels of rhodanese, an enzyme responsible for cyanide and sulfide detoxification. These results offer a first look at the varied functions of the microbiota in the disease mat and surrounding coral surface and enabled us to develop an improved functional model for this disease.


Assuntos
Antozoários/microbiologia , Cianobactérias/genética , Estações do Ano , Transcriptoma , Animais , Interações Hospedeiro-Patógeno
8.
Arch Environ Contam Toxicol ; 70(2): 265-88, 2016 02.
Artigo em Inglês | MEDLINE | ID: mdl-26487337

RESUMO

Benzophenone-3 (BP-3; oxybenzone) is an ingredient in sunscreen lotions and personal-care products that protects against the damaging effects of ultraviolet light. Oxybenzone is an emerging contaminant of concern in marine environments­produced by swimmers and municipal, residential, and boat/ship wastewater discharges. We examined the effects of oxybenzone on the larval form (planula) of the coral Stylophora pistillata, as well as its toxicity in vitro to coral cells from this and six other coral species. Oxybenzone is a photo-toxicant; adverse effects are exacerbated in the light. Whether in darkness or light, oxybenzone transformed planulae from a motile state to a deformed, sessile condition. Planulae exhibited an increasing rate of coral bleaching in response to increasing concentrations of oxybenzone. Oxybenzone is a genotoxicant to corals, exhibiting a positive relationship between DNA-AP lesions and increasing oxybenzone concentrations. Oxybenzone is a skeletal endocrine disruptor; it induced ossification of the planula, encasing the entire planula in its own skeleton. The LC50 of planulae exposed to oxybenzone in the light for an 8- and 24-h exposure was 3.1 mg/L and 139 µg/L, respectively. The LC50s for oxybenzone in darkness for the same time points were 16.8 mg/L and 779 µg/L. Deformity EC20 levels (24 h) of planulae exposed to oxybenzone were 6.5 µg/L in the light and 10 µg/L in darkness. Coral cell LC50s (4 h, in the light) for 7 different coral species ranges from 8 to 340 µg/L, whereas LC20s (4 h, in the light) for the same species ranges from 0.062 to 8 µg/L. Coral reef contamination of oxybenzone in the U.S. Virgin Islands ranged from 75 µg/L to 1.4 mg/L, whereas Hawaiian sites were contaminated between 0.8 and 19.2 µg/L. Oxybenzone poses a hazard to coral reef conservation and threatens the resiliency of coral reefs to climate change.


Assuntos
Antozoários/efeitos dos fármacos , Benzofenonas/toxicidade , Monitoramento Ambiental , Protetores Solares/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Havaí , Ilhas Virgens Americanas
9.
Dis Aquat Organ ; 116(1): 47-58, 2015 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-26378407

RESUMO

Changes of the black band disease (BBD)-associated microbial consortium on the surface of a Favia sp. coral colony were assessed in relation to the different disease phases. A number of highly active bacterial groups changed in numbers as the BBD disease signs changed. These included Gamma- and Epsilonproteobacteria, Bacteroidetes and Firmicutes groups. One cyanobacterium strain, BGP10_4ST (FJ210722), was constantly present in the disease interface and adjacent tissues of the affected corals, regardless of disease phase. The dynamics of the operational taxonomic units (OTUs) of this BBD-specific strain provide a marker regarding the disease phase. The disease's active phase is characterized by a wide dark band progressing along the tissue-skeleton interface and by numerous bacterial OTUs. Cyanobacterial OTUs decreased in numbers as the disease signs waned, perhaps opening a niche for additional microorganisms. Even when black band signs disappeared there was a consistent though low abundance of the BBD-specific cyanobacteria (BGP10_4ST), and the microbial community of the disease-skeleton interface remained surprisingly similar to the original band community. These results provide an indication that the persistence of even low numbers of this BBD-specific cyanobacterium in coral tissues during the non-active (or subclinical) state could facilitate reinitiation of BBD signs during the following summer. This may indicate that this bacterium is major constituent of the disease and that its persistence and ability to infiltrate the coral tissues may act to facilitate the assembly of the other BBD-specific groups of bacteria.


Assuntos
Antozoários/microbiologia , Bactérias/classificação , Cianobactérias/classificação , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Cianobactérias/genética , Cianobactérias/isolamento & purificação , DNA Bacteriano/genética , Interações Hospedeiro-Patógeno , Oceano Índico , Fatores de Tempo
10.
Biol Reprod ; 90(6): 122, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24790160

RESUMO

Reproductive development of anthozoans reveals wide range of breeding strategies. Here, we report the occurrence of trioecy in the sea anemone Aiptasia diaphana (co-occurrence of males, females, and hermaphrodites), which so far was well documented only in plants. Age-homogeneous populations were obtained from pedal lacerates (asexual propagules) and cultured under control conditions. Careful documentation of growth, gamete morphology, and vertebrate-like steroid (i.e., progesterone, testosterone, and estradiol) levels were carried out over a 9-wk period between 4 and 12 wk postlaceration (wpl). First phenotypic signs of gametes development were observed in 6-wk-old anemones, pointing to the differentiation of males and hermaphrodites. While the males exhibited cellular progression of spermatogenesis, the hermaphrodites underwent a process of sex allocation, giving rise to male, female, and hermaphrodite phenotypes. Testosterone levels were relatively high prior to gamete appearance (4 wpl) and later on during gamete maturation (10 wpl). Conversely, estradiol levels steadily increased from 6 to 10 wpl, reaching their peak concomitant with oocyte maturation. Interestingly, increased oocyte atresia incidences were recorded during 9-12 wpl, coinciding with declining levels of steroid hormones. These results point to a strong similarity between the activity of sex steroids in vertebrates and that of vertebrate-like sex steroids on critical stages of A. diaphana's sexual differentiation and gametogenic cycle. The reproductive characteristics of A. diaphana make this anthozoan an important model species for the study of evolutionary drivers and processes underlying sexual development.


Assuntos
Células Germinativas/fisiologia , Hormônios Esteroides Gonadais/fisiologia , Organismos Hermafroditas/fisiologia , Reprodução/fisiologia , Anêmonas-do-Mar/fisiologia , Diferenciação Sexual/fisiologia , Animais , Estradiol/metabolismo , Feminino , Masculino , Modelos Biológicos , Caracteres Sexuais , Especificidade da Espécie , Estatísticas não Paramétricas , Testosterona/metabolismo
11.
Microb Ecol ; 67(1): 177-85, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24141943

RESUMO

Black band disease (BBD), characterized by a black mat or line that migrates across a coral colony leaving behind it a bare skeleton, is a persistent disease affecting massive corals worldwide. Previous microscopic and molecular examination of this disease in faviid corals from the Gulf of Eilat revealed a number of possible pathogens with the most prominent being a cyanobacterium identified as Pseudoscillatoria coralii. We examined diseased coral colonies using histopathological and molecular methods in order to further assess the possible role of this cyanobacterium, its mode of entry, and pathological effects on the coral host tissues. Affected areas of colonies with BBD were sampled for examination using both light and transmission electron microscopies. Results showed that this dominant cyanobacterium was found on the coral surface, at the coral-skeletal interface, and invading the polyp tissues and gastrovascular cavity. Although tissues surrounding the invasive cyanobacterial filaments did not show gross morphological alterations, microscopic examination revealed that the coral cells surrounding the lesion were dissociated, necrotic, and highly vacuolated. No amoebocytes were evident in the mesoglea of affected tissues suggesting a possible repression of the coral immune response. Morphological and molecular similarity of the previously isolated BBD-associated cyanobacterium P. coralii to the current samples strengthens the premise that this species is involved in the disease in this coral. These results indicate that the cyanobacteria may play a pivotal role in this disease and that the mode of entry may be via ingestion, penetrating the coral via the gastrodermis, as well as through the skeletal-tissue interface.


Assuntos
Antozoários/microbiologia , Cianobactérias/patogenicidade , Animais , Antozoários/ultraestrutura , Cianobactérias/classificação , DNA Bacteriano/genética , Oceano Índico , Microscopia Eletrônica de Transmissão , Filogenia , RNA Ribossômico 16S/genética
12.
Ecotoxicology ; 23(2): 175-91, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24352829

RESUMO

Benzophenone-2 (BP-2) is an additive to personal-care products and commercial solutions that protects against the damaging effects of ultraviolet light. BP-2 is an "emerging contaminant of concern" that is often released as a pollutant through municipal and boat/ship wastewater discharges and landfill leachates, as well as through residential septic fields and unmanaged cesspits. Although BP-2 may be a contaminant on coral reefs, its environmental toxicity to reefs is unknown. This poses a potential management issue, since BP-2 is a known endocrine disruptor as well as a weak genotoxicant. We examined the effects of BP-2 on the larval form (planula) of the coral, Stylophora pistillata, as well as its toxicity to in vitro coral cells. BP-2 is a photo-toxicant; adverse effects are exacerbated in the light versus in darkness. Whether in darkness or light, BP-2 induced coral planulae to transform from a motile planktonic state to a deformed, sessile condition. Planulae exhibited an increasing rate of coral bleaching in response to increasing concentrations of BP-2. BP-2 is a genotoxicant to corals, exhibiting a strong positive relationship between DNA-AP lesions and increasing BP-2 concentrations. BP-2 exposure in the light induced extensive necrosis in both the epidermis and gastro dermis. In contrast, BP-2 exposure in darkness induced autophagy and autophagic cell death.The LC50 of BP-2 in the light for an 8 and 24 hour exposure was 120 parts per million (ppm) and 165 parts per billion (ppb), respectively. The LC50s for BP-2 in darkness for the same time points were 144 parts per million and 548 parts per billion [corrected].


Assuntos
Antozoários/efeitos dos fármacos , Benzofenonas/toxicidade , Protetores Solares/toxicidade , Raios Ultravioleta , Animais , Recifes de Corais , Filtração , Larva/efeitos dos fármacos , Dose Letal Mediana , Microscopia Eletrônica de Transmissão , Nível de Efeito Adverso não Observado , Análise de Regressão , Testes de Toxicidade
13.
Microb Ecol ; 65(1): 50-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22864854

RESUMO

Colonies of the hydrocoral Millepora dichotoma along the Gulf of Eilat are exhibiting unusual tissue lesions in the form of white spots. The emergence and rapid establishment of these multifocal tissue lesions was the first of its kind reported in this region. A characterization of this morphological anomaly revealed bleached tissues with a significant presence of bacteria in the tissue lesion area. To ascertain possible differences in microbial biota between the lesion area and non-affected tissues, we characterized the bacterial diversity in the two areas of these hydrocorals. Both culture-independent (molecular) and culture-dependent assays showed a shift in bacterial community structure between the healthy and affected tissues. Several 16S rRNA gene sequences retrieved from the affected tissues matched sequences of bacterial clones belonging to Alphaproteobacteria and Bacteroidetes members previously associated with various diseases in scleractinian corals.


Assuntos
Antozoários/microbiologia , Bactérias/patogenicidade , Metagenoma , Animais , Antozoários/ultraestrutura , Bactérias/classificação , Bactérias/isolamento & purificação , DNA Bacteriano/genética , Oceano Índico , Microscopia Eletrônica de Transmissão , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
14.
Pharmaceutics ; 14(5)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35631553

RESUMO

Antimicrobial resistance is among the top global health problems with antibacterial resistance currently representing the major threat both in terms of occurrence and complexity. One reason current treatments of bacterial diseases are ineffective is the occurrence of protective and resistant biofilm structures. Phytochemicals are currently being reviewed for newer anti-virulence agents. In the present study, we aimed to investigate the anti-virulence activity of 3,3'-diindolylmethane (DIM), a bioactive cruciferous phytochemical. Using a series of in vitro assays on major Gram-negative pathogens, including transcriptomic analysis, and in vivo porcine wound studies as well as in silico experiments, we show that DIM has anti-biofilm activity. Following DIM treatment, our findings show that biofilm formation of two of the most prioritized bacterial pathogens Acinetobacter baumannii and Pseudomonas aeruginosa was inhibited respectively by 65% and 70%. Combining the antibiotic tobramycin with DIM enabled a high inhibition (94%) of P. aeruginosa biofilm. A DIM-based formulation, evaluated for its wound-healing efficacy on P. aeruginosa-infected wounds, showed a reduction in its bacterial bioburden, and wound size. RNA-seq was used to evaluate the molecular mechanism underlying the bacterial response to DIM. The gene expression profile encompassed shifts in virulence and biofilm-associated genes. A network regulation analysis showed the downregulation of 14 virulence-associated super-regulators. Quantitative real-time PCR verified and supported the transcriptomic results. Molecular docking and interaction profiling indicate that DIM can be accommodated in the autoinducer- or DNA-binding pockets of the virulence regulators making multiple non-covalent interactions with the key residues that are involved in ligand binding. DIM treatment prevented biofilm formation and destroyed existing biofilm without affecting microbial death rates. This study provides evidence for bacterial virulence attenuation by DIM.

15.
ISME Commun ; 1(1): 18, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37938689

RESUMO

To improve our understanding of coral infection and disease, it is important to study host-pathogen interactions at relevant spatio-temporal scales. Here, we provide a dynamic microscopic view of the interaction between a coral pathogen, Vibrio coralliilyticus and its coral host Pocillopora damicornis. This was achieved using a microfluidics-based system facilitating control over flow, light and temperature conditions. Combined with time-resolved biochemical and microbial analyses of the system exudates, this approach provides novel insights into the early phases of a coral infection at unprecedented spatio-temporal resolution. We provide evidence that infection may occur through ingestion of the pathogen by the coral polyps, or following pathogen colonization of small tissue lesions on the coral surface. Pathogen ingestion invariably induced the release of pathogen-laden mucus from the gastrovascular cavity. Despite the high bacterial load used in our experiments, approximately one-third of coral fragments tested did not develop further symptoms. In the remaining two-thirds, mucus spewing was followed by the severing of calicoblastic connective tissues (coenosarc) and subsequently necrosis of most polyps. Despite extensive damage to symptomatic colonies, we frequently observed survival of individual polyps, often accompanied by polyp bail-out. Biochemical and microbial analyses of exudates over the course of symptomatic infections revealed that severing of the coenosarc was followed by an increase in matrix metaloprotease activity, and subsequent increase in both pathogen and total bacterial counts. Combined, these observations provide a detailed description of a coral infection, bringing us a step closer to elucidating the complex interactions underlying coral disease.

16.
Anim Microbiome ; 3(1): 79, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34782025

RESUMO

BACKGROUND: Algivorous sea urchins can obtain energy from a diet of a single algal species, which may result in consequent changes in their gut microbe assemblies and association networks. METHODS: To ascertain whether such changes are led by specific microbes or limited to a specific region in the gut, we compared the microbial assembly in the three major gut regions of the sea urchin Tripneustes gratilla elatensis when fed a mono-specific algal diet of either Ulva fasciata or Gracilaria conferta, or an algal-free diet. DNA extracts from 5 to 7 individuals from each diet treatment were used for Illumina MiSeq based 16S rRNA gene sequencing (V3-V4 region). Niche breadth of each microbe in the assembly was calculated for identification of core, generalist, specialist, or unique microbes. Network analyzers were used to measure the connectivity of the entire assembly and of each of the microbes within it and whether it altered with a given diet or gut region. Lastly, the predicted metabolic functions of key microbes in the gut were analyzed to evaluate their potential contribution to decomposition of dietary algal polysaccharides. RESULTS: Sea urchins fed with U. fasciata grew faster and their gut microbiome network was rich in bacterial associations (edges) and networking clusters. Bacteroidetes was the keystone microbe phylum in the gut, with core, generalist, and specialist representatives. A few microbes of this phylum were central hub nodes that maintained community connectivity, while others were driver microbes that led the rewiring of the assembly network based on diet type through changes in their associations and centrality. Niche breadth agreed with microbes' richness in genes for carbohydrate active enzymes and correlated Bacteroidetes specialists to decomposition of specific polysaccharides in the algal diets. CONCLUSIONS: The dense and well-connected microbial network in the gut of Ulva-fed sea urchins, together with animal's rapid growth, may suggest that this alga was most nutritious among the experimental diets. Our findings expand the knowledge on the gut microbial assembly in T. gratilla elatensis and strengthen the correlation between microbes' generalism or specialism in terms of occurrence in different niches and their metabolic arsenal which may aid host nutrition.

17.
Front Public Health ; 9: 561710, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35047467

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an RNA virus, a member of the coronavirus family of respiratory viruses that includes severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1) and the Middle East respiratory syndrome (MERS). It has had an acute and dramatic impact on health care systems, economies, and societies of affected countries during the past 8 months. Widespread testing and tracing efforts are being employed in many countries in attempts to contain and mitigate this pandemic. Recent data has indicated that fecal shedding of SARS-CoV-2 is common and that the virus RNA can be detected in wastewater. This indicates that wastewater monitoring may provide a potentially efficient tool for the epidemiological surveillance of SARS-CoV-2 infection in large populations at relevant scales. In particular, this provides important means of (i) estimating the extent of outbreaks and their spatial distributions, based primarily on in-sewer measurements, (ii) managing the early-warning system quantitatively and efficiently, and (iii) verifying disease elimination. Here we report different virus concentration methods using polyethylene glycol (PEG), alum, or filtration techniques as well as different RNA extraction methodologies, providing important insights regarding the detection of SARS-CoV-2 RNA in sewage. Virus RNA particles were detected in wastewater in several geographic locations in Israel. In addition, a correlation of virus RNA concentration to morbidity was detected in Bnei-Barak city during April 2020. This study presents a proof of concept for the use of direct raw sewage-associated virus data, during the pandemic in the country as a potential epidemiological tool.


Assuntos
COVID-19 , Esgotos , Monitoramento Ambiental , Humanos , RNA Viral/genética , SARS-CoV-2
18.
Chemosphere ; 283: 131194, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34467943

RESUMO

The COVID-19 pandemic created a global crisis impacting not only healthcare systems, but also economics and society. Therefore, it is important to find novel methods for monitoring disease activity. Recent data have indicated that fecal shedding of SARS-CoV-2 is common, and that viral RNA can be detected in wastewater. This suggests that wastewater monitoring is a potentially efficient tool for both epidemiological surveillance, and early warning for SARS-CoV-2 circulation at the population level. In this study we sampled an urban wastewater infrastructure in the city of Ashkelon (Ì´ 150,000 population), Israel, during the end of the first COVID-19 wave in May 2020 when the number of infections seemed to be waning. We were able to show varying presence of SARS-CoV-2 RNA in wastewater from several locations in the city during two sampling periods, before the resurgence was clinically apparent. This was expressed with a new index, Normalized Viral Load (NVL) which can be used in different area scales to define levels of virus activity such as red (high) or green (no), and to follow morbidity in the population at the tested area. The rise in viral load between the two sampling periods (one week apart) indicated an increase in morbidity that was evident two weeks to a month later in the population. Thus, this methodology may provide an early indication for SARS-CoV-2 infection outbreak in a population before an outbreak is clinically apparent.


Assuntos
COVID-19 , Esgotos , Humanos , Pandemias , RNA Viral , SARS-CoV-2 , Águas Residuárias
19.
J Eukaryot Microbiol ; 57(3): 236-44, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20236189

RESUMO

The surfaces of massive corals of the genus Favia from Eilat, Red Sea, and from Heron Island, Great Barrier Reef, are covered by a layer of eukaryotic microorganisms. These microorganisms are embedded in the coral mucus and tissue. In the Gulf of Eilat, the prevalence of corals covered by patches of eukaryotic microorganisms was positively correlated with a decrease in water temperatures (from 25-28 degrees C in the summer to 20-23 degrees C in winter). Comparisons carried out using transmission and scanning electron microscopy showed morphological similarities between the microorganisms from the two geographically distant reefs. The microorganisms found on and in the tissues were approximately 5-15 microm in diameter, surrounded by scales in their cell wall, contained a nucleus, and included unique auto-florescent coccoid bodies of approximately 1 mum. Such morphological characters suggested that these microorganisms are stramenopile protists and in particular thraustochytrids. Molecular analysis, carried out using specific primers for stramenopile 18S rRNA genes, revealed that 90% (111/123) of the clones in the gene libraries were from the Thraustochytriidae. The dominant genera in this family were Aplanochytrium sp., Thraustochytrium sp., and Labyrinthuloides sp. Ten stramenopile strains were isolated and cultured from the corals. Some strains showed > or =97% similarity to clones derived from libraries of mucus-associated microorganisms retrieved directly from these corals. Fatty acid characterization of one of the prevalent strains revealed a high percentage of polyunsaturated fatty acids, including omega-3. The possible association of these stramenopiles in the coral holobiont appeared to be a positive one.


Assuntos
Antozoários/parasitologia , Eucariotos/isolamento & purificação , Animais , Antozoários/ultraestrutura , Biodiversidade , DNA Ribossômico/genética , Eucariotos/classificação , Eucariotos/genética , Dados de Sequência Molecular , Filogenia , Água do Mar/parasitologia
20.
Proc Biol Sci ; 276(1659): 1063-7, 2009 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-19129118

RESUMO

Stinging mechanisms generally deliver venomous compounds to external targets. However, nematocysts, the microscopic stinging organelles that are common to all members of the phylum Cnidaria, occur and act in both external and internal tissue structures. This is the first report of such an internal piercing mechanism. This mechanism identifies prey items within the body cavity of the sea anemone and actively injects them with cytolytic venom compounds. Internal tissues isolated from sea anemones caused the degradation of live Artemia salina nauplii in vitro. When examined, the nauplii were found to be pierced by discharged nematocysts. This phenomenon is suggested to aid digestive phagocytic processes in a predator otherwise lacking the means to masticate its prey.


Assuntos
Anêmonas-do-Mar/citologia , Anêmonas-do-Mar/fisiologia , Animais , Artemia , Mecanorreceptores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA