Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Kidney Int ; 99(5): 1140-1148, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33359499

RESUMO

BK polyomavirus-associated nephropathy is a common complication after kidney transplantation leading to reduced graft function or loss. The molecular pathogenesis of BK polyomavirus-induced nephropathy is not well understood. A recent study had described a protective effect of the activating natural killer cell receptor KIR3DS1 in BK polyomavirus-associated nephropathy, suggesting a role of NK cells in modulating disease progression. Using an in vitro cell culture model of human BK polyomavirus infection and kidney biopsy samples from patients with BK polyomavirus-associated nephropathy, we observed significantly increased surface expression of the ligand for KIR3DS1, HLA-F, on BK polyomavirus-infected kidney tubular cells. Upregulation of HLA-F expression resulted in significantly increased binding of KIR3DS1 to BK polyomavirus-infected cells and activation of primary KIR3DS-positive natural killer cells. Thus, our data provide a mechanism by which KIR3DS-positive natural killer cells can control BK polyomavirus infection of the kidney, and rationale for exploring HLA-F/KIR3DS1 interactions for immunotherapeutic approaches in BK polyomavirus-associated nephropathy.


Assuntos
Vírus BK , Nefropatias , Infecções por Polyomavirus , Infecções Tumorais por Vírus , Humanos , Células Matadoras Naturais/metabolismo , Receptores KIR3DS1/genética , Receptores KIR3DS1/metabolismo , Regulação para Cima
2.
J Virol ; 92(7)2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29343574

RESUMO

Human polyomavirus (HPyV) DNA genomes contain three regions denoted the early viral gene region (EVGR), encoding the regulatory T-antigens and one microRNA, the late viral gene region (LVGR), encoding the structural Vp capsid proteins, and the noncoding control region (NCCR). The NCCR harbors the origin of viral genome replication and bidirectional promoter/enhancer functions governing EVGR and LVGR expression on opposite DNA strands. Despite principal similarities, HPyV NCCRs differ in length, sequence, and architecture. To functionally compare HPyV NCCRs, sequences from human isolates were inserted into a bidirectional reporter vector using dsRed2 for EVGR expression and green fluorescent protein (GFP) for LVGR expression. Transfecting HPyV NCCR reporter vectors into human embryonic kidney 293 (HEK293) cells and flow cytometry normalized to archetype BKPyV NCCR revealed a hierarchy of EVGR expression levels with MCPyV, HPyV12, and STLPyV NCCRs conferring stronger levels and HPyV6, HPyV9, and HPyV10 NCCRs weaker levels, while LVGR expression was less variable and showed comparable activity levels. Transfection of HEK293T cells expressing simian virus 40 (SV40) large T antigen (LTag) increased EVGR expression for most HPyV NCCRs, which correlated with the number of LTag-binding sites (Spearman's r, 0.625; P < 0.05) and decreased following SV40 LTag small interfering RNA (siRNA) knockdown. LTag-dependent activation was specifically confirmed for two different MCPyV NCCRs in 293MCT cells expressing the cognate MCPyV LTag. HPyV NCCR expression in different cell lines derived from skin (A375), cervix (HeLaNT), lung (A549), brain (Hs683), and colon (SW480) demonstrated that host cell properties significantly modulate the baseline HPyV NCCR activity, which partly synergized with SV40 LTag expression. Clinically occurring NCCR sequence rearrangements of HPyV7 PITT-1 and -2 and HPyV9 UF1 were found to increase EVGR expression compared to the respective HPyV archetype, but this was partly host cell type specific.IMPORTANCE HPyV NCCRs integrate essential viral functions with respect to host cell specificity, persistence, viral replication, and disease. Here, we show that HPyV NCCRs not only differ in sequence length, number, and position of LTag- and common transcription factor-binding sites but also confer differences in bidirectional viral gene expression. Importantly, EVGR reporter expression was significantly modulated by LTag expression and by host cell properties. Clinical sequence variants of HPyV7 and HPyV9 NCCRs containing deletions and insertions were associated with increased EVGR expression, similar to BKPyV and JCPyV rearrangements, emphasizing that HPyV NCCR sequences are major determinants not only of host cell tropism but also of pathogenicity. These results will help to define secondary HPyV cell tropism beyond HPyV surface receptors, to identify key viral and host factors shaping the viral life cycle, and to develop preclinical models of HPyV persistence and replication and suitable antiviral targets.


Assuntos
Antígenos Virais de Tumores , Regulação Viral da Expressão Gênica , Rearranjo Gênico , Genoma Viral , Modelos Genéticos , Polyomaviridae , Antígenos Virais de Tumores/genética , Antígenos Virais de Tumores/metabolismo , Células HEK293 , Humanos , MicroRNAs/biossíntese , MicroRNAs/genética , Polyomaviridae/genética , Polyomaviridae/metabolismo , RNA Viral/biossíntese , RNA Viral/genética
3.
J Neuroimmunol ; 359: 577675, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34403862

RESUMO

Myelin-specific CD4 T effector cells (Teffs), Th1 and Th17 cells, are encephalitogenic in experimental autoimmune encephalomyelitis (EAE), a well-defined murine model of multiple sclerosis (MS) and implicated in MS pathogenesis. Forkhead box O 1 (FoxO1) is a conserved effector molecule in PI3K/Akt signaling and critical in the differentiation of CD4 T cells into T helper subsets. However, it is unclear whether FoxO1 may be a target for redirecting CD4 T cell differentiation and benefit CNS autoimmunity. Using a selective FoxO1 inhibitor AS1842856, we show that inhibition of FoxO1 suppressed the differentiation and expansion of Th1 cells. The transdifferentiation of Th17 cells into encephalitogenic Th1-like cells was suppressed by FoxO1 inhibition upon reactivation of myelin-specific CD4 T cells from EAE mice. The transcriptional balance skewed from the Th1 transcription factor T-bet toward the Treg transcription factor Foxp3. Myelin-specific CD4 T cells treated with the FoxO1 inhibitor were less encephalitogenic in adoptive transfer EAE studies. Inhibition of FoxO1 in T cells from MS patients significantly suppressed the expansion of Th1 cells. Furthermore, FoxO1 inhibition with AS1842856 promoted the development of functional iTreg cells. The immune checkpoint programmed cell death protein-1 (PD-1)-induced Foxp3 expression in CD4 T cells was impaired by FoxO1 inhibition. These data illustrate an important role of FoxO1 signaling in CNS autoimmunity via regulating autoreactive Teff and Treg balance.


Assuntos
Autoimunidade/fisiologia , Linfócitos T CD4-Positivos/imunologia , Encefalomielite Autoimune Experimental/imunologia , Proteína Forkhead Box O1/imunologia , Esclerose Múltipla/imunologia , Adulto , Animais , Autoimunidade/efeitos dos fármacos , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Feminino , Proteína Forkhead Box O1/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Esclerose Múltipla/metabolismo , Quinolonas/farmacologia
4.
JCI Insight ; 6(4)2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33411696

RESUMO

Reestablishing an appropriate balance between T effector cells (Teff) and Tregs is essential for correcting autoimmunity. Multiple sclerosis (MS) is an immune-mediated chronic CNS disease characterized by neuroinflammation, demyelination, and neuronal degeneration, in which the Teff:Treg balance is skewed toward pathogenic Teffs Th1 and Th17 cells. STAT3 is a key regulator of Teff:Treg balance. Using the structure-based design, we have developed a potentially novel small-molecule prodrug LLL12b that specifically inhibits STAT3 and suppresses Th17 differentiation and expansion. Moreover, LLL12b regulates the fate decision between Th17 and Tregs in an inflammatory environment, shifting Th17:Treg balance toward Tregs and favoring the resolution of inflammation. Therapeutic administration of LLL12b after disease onset significantly suppresses disease progression in adoptively transferred, chronic, and relapsing-remitting experimental autoimmune encephalomyelitis. Disease relapses were also significantly suppressed by LLL12b given during the remission phase. Additionally, LLL12b shifts Th17:Treg balance of CD4+ T cells from MS patients toward Tregs and increases Teff sensitivity to Treg-mediated suppression. These data suggest that selective inhibition of STAT3 by the small molecule LLL12b recalibrates the effector and regulatory arms of CD4+ T responses, representing a potentially clinically translatable therapeutic strategy for MS.


Assuntos
Autoimunidade , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/imunologia , Fator de Transcrição STAT3/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Animais , Antraquinonas/farmacologia , Linfócitos T CD4-Positivos/imunologia , Diferenciação Celular , Doenças Desmielinizantes/tratamento farmacológico , Doenças Desmielinizantes/imunologia , Encefalomielite Autoimune Experimental/imunologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sulfonamidas/farmacologia , Linfócitos T Reguladores/efeitos dos fármacos , Células Th17/imunologia
5.
J Neuroimmunol ; 359: 577676, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34364105

RESUMO

B cell depletion therapy has been shown to be beneficial in multiple sclerosis (MS). However, the mechanism by which B cell depletion mediates its beneficial effects in MS is still unclear. To better understand how B cell depletion may benefit patients with a disease previously thought to be primarily mediated by CD4 T cells, immune profiles were monitored in 48 patients in a phase II trial of ublituximab, a glycoengineered CD20 monoclonal antibody, at 18 time points over a year. As we previously described there was a significant shift in the percentages of T cells, NK cells, and myeloid cells following the initial dose of ublituximab, but this shift normalized within a week and these populations remained stable for the duration of the study. However, T cell subsets changed with an increase in the percentage of naïve CD4 and CD8 T cells and a decline in memory T cells. Importantly, the percentage of Th1 and CD4+GM-CSF+ T cells decreased, while the percentage of Tregs continued to increase over the year. Ublituximab not only depleted CD20+ B cells, but also CD20+ T cells. The favorable changes in the T cell subsets may contribute to the beneficial effects of B cell depletion therapy.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Linfócitos B/metabolismo , Células Matadoras Naturais/metabolismo , Depleção Linfocítica/métodos , Esclerose Múltipla Recidivante-Remitente/sangue , Linfócitos T/metabolismo , Anticorpos Monoclonais/farmacologia , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Humanos , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Esclerose Múltipla Recidivante-Remitente/imunologia , Relatório de Pesquisa , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia
6.
Thromb Res ; 134(6): 1285-91, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25201004

RESUMO

INTRODUCTION: The multimeric form of von Willebrand factor (VWF), is the largest soluble protein in mammals and exhibits a multidomain structure resulting in multiple functions. Upon agonist stimulation endothelial cells secrete VWF multimers from Weibel-Palade bodies into the blood stream where VWF plays an essential role in platelet-dependent primary hemostasis. Elongation of VWF strings on the cells' surface leads to accessibility of VWF binding sites for proteins, such as platelet membrane glycoprotein Ib. The prothrombotic strings are size-regulated by the metalloprotease ADAMTS13 by shear force-activated proteolytic cleavage. MATERIAL AND METHODS: VWF string formation was induced by histamine stimulation of HUVEC cells under unidirectional shear flow and VWF strings were detected employing the VWF binding peptide of platelet glycoprotein Ib coupled to latex beads. VWF strings were then used as substrate for kinetic studies of recombinant and plasma ADAMTS13. RESULTS: To investigate specific aspects of the shear-dependent functions of VWF and ADAMTS13, we developed a shear flow assay that allows observation of VWF string formation and their degradation by ADAMTS13 without the need for isolated platelets. Our assay specifically detects VWF strings, can be coupled with fluorescent applications and allows semi-automated, quantitative assessment of recombinant and plasma ADAMTS13 activity. CONCLUSIONS: Our assay may serve as a valuable research tool to investigate the biochemical characteristics of VWF and ADAMTS13 under shear flow and could complement diagnostics of von Willebrand Disease and Thrombotic Thrombocytopenic Purpura as it allows detection of shear flow-dependent dysfunction of VWD-associated VWF mutants as well as TTP-associated ADAMTS13 mutants.


Assuntos
Proteínas ADAM/química , Proteínas ADAM/fisiologia , Bioensaio/métodos , Células Endoteliais/fisiologia , Análise de Injeção de Fluxo/métodos , Fator de von Willebrand/química , Fator de von Willebrand/fisiologia , Proteína ADAMTS13 , Células Cultivadas , Resistência ao Cisalhamento/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA