Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Inorg Chem ; 63(15): 6571-6575, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38572833

RESUMO

Structure-porosity relationships for metal-organic polyhedra (MOPs) are hardly investigated because they tend to be amorphized after activation, which inhibits crystallographic characterization. Here, we show a mixed-ligand strategy to statistically distribute two distinct carbazole-type ligands within rhodium-based octahedral MOPs, leading to systematic tuning of the microporosity in the resulting amorphous solids.

2.
J Am Chem Soc ; 145(18): 10051-10060, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37125876

RESUMO

The outstanding diversity of Zr-based frameworks is inherently linked to the variable coordination geometry of Zr-oxo clusters and the conformational flexibility of the linker, both of which allow for different framework topologies based on the same linker-cluster combination. In addition, intrinsic structural disorder provides a largely unexplored handle to further expand the accessibility of novel metal-organic framework (MOF) structures that can be formed. In this work, we report the concomitant synthesis of three topologically different MOFs based on the same M6O4(OH)4 clusters (M = Zr or Hf) and methane-tetrakis(p-biphenyl-carboxylate) (MTBC) linkers. Two novel structural models are presented based on single-crystal diffraction analysis, namely, cubic c-(4,12)MTBC-M6 and trigonal tr-(4,12)MTBC-M6, which comprise 12-coordinated clusters and 4-coordinated tetrahedral linkers. Notably, the cubic phase features a new architecture based on orientational cluster disorder, which is essential for its formation and has been analyzed by a combination of average structure refinements and diffuse scattering analysis from both powder and single-crystal X-ray diffraction data. The trigonal phase also features structure disorder, although involving both linkers and secondary building units. In both phases, remarkable geometrical distortion of the MTBC linkers illustrates how linker flexibility is also essential for their formation and expands the range of achievable topologies in Zr-based MOFs and its analogues.

3.
Angew Chem Int Ed Engl ; 62(14): e202217680, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36591731

RESUMO

Around 10-15 % of the world's energy consumption is accounted for by the separation and purification of chemicals. Among them is the enrichment and separation of isotopologues which are an essential aspect of modern chemistry. In their recent work, Su et al. demonstrate the separation of water isotopologues by responsive dynamic pore windows in a microporous coordination polymer with unprecedented selectivity based on an elegant mechanism.

4.
Nature ; 532(7599): 348-52, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27049950

RESUMO

Adsorption-based phenomena are important in gas separations, such as the treatment of greenhouse-gas and toxic-gas pollutants, and in water-adsorption-based heat pumps for solar cooling systems. The ability to tune the pore size, shape and functionality of crystalline porous coordination polymers--or metal-organic frameworks (MOFs)--has made them attractive materials for such adsorption-based applications. The flexibility and guest-molecule-dependent response of MOFs give rise to unexpected and often desirable adsorption phenomena. Common to all isothermal gas adsorption phenomena, however, is increased gas uptake with increased pressure. Here we report adsorption transitions in the isotherms of a MOF (DUT-49) that exhibits a negative gas adsorption; that is, spontaneous desorption of gas (methane and n-butane) occurs during pressure increase in a defined temperature and pressure range. A combination of in situ powder X-ray diffraction, gas adsorption experiments and simulations shows that this adsorption behaviour is controlled by a sudden hysteretic structural deformation and pore contraction of the MOF, which releases guest molecules. These findings may enable technologies using frameworks capable of negative gas adsorption for pressure amplification in micro- and macroscopic system engineering. Negative gas adsorption extends the series of counterintuitive phenomena such as negative thermal expansion and negative refractive indices and may be interpreted as an adsorptive analogue of force-amplifying negative compressibility transitions proposed for metamaterials.

5.
J Am Chem Soc ; 143(11): 4143-4147, 2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33719416

RESUMO

New nanoporous materials have the ability to revolutionize adsorption and separation processes. In particular, materials with adaptive cavities have high selectivity and may display previously undiscovered phenomena, such as negative gas adsorption (NGA), in which gas is released from the framework upon an increase in pressure. Although the thermodynamic driving force behind this and many other counterintuitive adsorption phenomena have been thoroughly investigated in recent years, several experimental observations remain difficult to explain. This necessitates a comprehensive analysis of gas adsorption akin to the conformational free energy landscapes used to understand the function of proteins. We have constructed the complete thermodynamic landscape of methane adsorption on DUT-49. Traversing this complex landscape reproduces the experimentally observed structural transitions, temperature dependence, and the hysteresis between adsorption and desorption. The complete thermodynamic description presented here provides unparalleled insight into adsorption and provides a framework to understand other adsorbents that challenge our preconceptions.

6.
Faraday Discuss ; 225: 286-300, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33136105

RESUMO

Molecules in gas and liquid states, as well as in solution, exhibit significant and random Brownian motion. Molecules in the solid-state, although strongly immobilized, can still exhibit significant intramolecular dynamics. However, in most framework materials, these intramolecular dynamics are driven by temperature, and therefore are neither controlled nor spatially or temporarily aligned. In recent years, several examples of molecular machines that allow for a stimuli-responsive control of dynamical motion, such as rotation, have been reported. In this contribution, we investigate the local and global properties of a Lennard-Jones (LJ) fluid surrounding a molecular motor and consider the influence of cooperative and non-directional rotation for a molecular motor-containing pore system. This study uses classical molecular dynamics simulations to describe a minimal model, which was developed to resemble known molecular motors. The properties of an LJ liquid surrounding an isolated molecular motor remain mostly unaffected by the introduced rotation. We then considered an arrangement of motors within a one-dimensional pore. Changes in diffusivity for pore sizes approaching the length of the rotor were observed, resulting from rotation of the motors. We also considered the influence of cooperative motor directionality on the directional transport properties of this confined fluid. Importantly, we discovered that specific unidirectional rotation of altitudinal motors can produce directed diffusion. This study provides an essential insight into molecular machine-containing frameworks, highlighting the specific structural arrangements that can produce directional mass transport.

7.
Faraday Discuss ; 225(0): 168-183, 2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33118556

RESUMO

Unusual adsorption phenomena, such as breathing and negative gas adsorption (NGA), are rare and challenge our thermodynamic understanding of adsorption in deformable porous solids. In particular, NGA appears to break the rules of thermodynamics in these materials by exhibiting a spontaneous release of gas accompanying an increase in pressure. This anomaly relies on long-lived metastable states. A fundamental understanding of this process is desperately required for the discovery of new materials with this exotic property. Interestingly, NGA was initially observed upon adsorption of methane at relatively low temperature, close to the respective standard boiling point of the adsorptive, and no NGA was observed at elevated temperatures. In this contribution, we present an extensive investigation of adsorption of an array of gases at various temperatures on DUT-49, a material which features an NGA transition. Experiments, featuring a wide range of gases and vapors at temperatures ranging from 21-308 K, were used to identify for each guest a critical temperature range in which NGA can be detected. The experimental results were complemented by molecular simulations that help to rationalize the absence of NGA at elevated temperatures, and the non-monotonic behavior present upon temperature decrease. Furthermore, this in-depth analysis highlights the crucial thermodynamic and kinetic conditions for NGA, which are unique to each guest and potentially other solids with similar effects. We expect this exploration to provide detailed guidelines for experimentally discovering NGA and related "rule breaking" phenomena in novel and already known materials, and provide the conditions required for the application of this effect, for example as pressure amplifying materials.

8.
Angew Chem Int Ed Engl ; 60(21): 11735-11739, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-33651917

RESUMO

Herein we demonstrate mesoporous frameworks interacting with carbon dioxide leading to stimulated structural contractions and massive out-of-equilibrium pressure amplification well beyond ambient pressure. Carbon dioxide, a non-toxic and non-flammable working medium, is promising for the development of pressure-amplifying frameworks for pneumatic technologies and safety systems. The strong interaction of the fluid with the framework even contracts DUT-46, a framework hitherto considered as non-flexible. Synchrotron-based in situ PXRD/adsorption experiments reveal the characteristic contraction pressure for DUT-49 pressure amplification in the range of 350-680 kPa. The stimulated framework contraction expels 1.1 to 2.4 mmol g-1 CO2 leading to autonomous pressure amplification in a pneumatic demonstrator system up to 428 kPa. According to system level estimations even higher theoretical pressure amplification may be achieved between 535 and 1011 kPa.

9.
J Am Chem Soc ; 142(19): 9048-9056, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32324391

RESUMO

The visible-light-driven rotation of an overcrowded alkene-based molecular motor strut in a dual-function metal-organic framework (MOF) is reported. Two types of functional linkers, a palladium-porphyrin photosensitizer and a bispyridine-derived molecular motor, were used to construct the framework capable of harvesting low-energy green light to power the rotary motion. The molecular motor was introduced in the framework using the postsynthetic solvent-assisted linker exchange (SALE) method, and the structure of the material was confirmed by powder (PXRD) and single-crystal X-ray (SC-XRD) diffraction. The large decrease in the phosphorescence lifetime and intensity of the porphyrin in the MOFs upon introduction of the molecular motor pillars confirms efficient triplet-to-triplet energy transfer between the porphyrin linkers and the molecular motor. Near-infrared Raman spectroscopy revealed that the visible light-driven rotation of the molecular motor proceeds in the solid state at rates similar to those observed in solution.

10.
Inorg Chem ; 59(1): 350-359, 2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-31820946

RESUMO

In situ formation of imine-based organic linkers facilitates the formation of metal-organic frameworks (MOFs), in particular if linker solubility hampers the direct synthesis. The reaction of ZrCl4 with 4-formylbenzoic acid or 4-formyl-3-hydroxybenzoic acid as the aldehyde source and 4-aminobenzoic acid as the amine source is shown to produce zirconium MOFs isoreticular to UiO-66 (PCN-161 and a novel DUT-133, [Zr6O4(OH)4(C15H9NO5)6], respectively). A similar reaction with p-phenylenediamine as the amine-containing building block gave 2-fold interpenetrated framework (PCN-164). Detailed characterization, including single crystal and powder X-ray diffraction, water stability tests, thermal stability, and in situ 1H and 13C NMR were performed to elucidate the formation mechanism of zirconium MOFs containing imine-based linkers. The resulting zirconium MOFs were evaluated as potential materials for CO2 capture and as ethylene oligomerization catalysts with anchored nickel as the active species.

11.
Angew Chem Int Ed Engl ; 59(36): 15325-15341, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32458545

RESUMO

In this Minireview, we discuss the fundamental chemistry of soft porous crystals (SPCs) by characterizing their common structural features and the resulting structural softness and transitions. In particular, we focus on the recently emerging properties based on metastable transitions and those arising from local dynamics. By comparing the resulting adsorption properties to those of commonly applied rigid adsorbents, we highlight the potential of SPCs to revolutionize adsorption-based technologies, considering our current understanding of the thermodynamic and kinetic aspects. We provide brief outlines for the experimental and computational characterization of such phenomena and offer an outlook toward next-generation SPCs likely to be discovered in the next decade.

12.
Phys Chem Chem Phys ; 20(38): 25039-25043, 2018 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-30246822

RESUMO

The pressure dependence of the 129Xe chemical shift in the metal-organic frameworks (MOFs) UiO-66 and UiO-67 (UiO - University of Oslo) has been investigated using both theory and experiment. The resulting chemical shift isotherms were analyzed with a theoretical approach based on model systems (as proposed by K. Trepte, J. Schaber, S. Schwalbe, F. Drache, I. Senkovska, S. Kaskel, J. Kortus, E. Brunner and G. Seifert, Phys. Chem. Chem. Phys., 2017, 19, 10020-10027) and experimental 129Xe NMR measurements at different pressures. All investigations were carried out at T = 237 K while the pressure range was chosen according to the maximum pressure at which Xe liquifies (p0 = 1.73 MPa or 17.3 bar), thus 0 < p ≤ p0. The theoretically predicted chemical shift isotherms agree well with the experimental ones. Additionally, a comparison of the chemical shift isotherms with volumetric adsorption isotherms was carried out to determine the similarities and differences of both isotherms.

13.
Angew Chem Int Ed Engl ; 56(36): 10676-10680, 2017 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-28670873

RESUMO

A flexible, yet very stable metal-organic framework (DUT-98, Zr6 O4 (OH)4 (CPCDC)4 (H2 O)4 , CPCDC=9-(4-carboxyphenyl)-9H-carbazole-3,6-dicarboxylate) was synthesized using a rational supermolecular building block approach based on molecular modelling of metal-organic chains and subsequent virtual interlinking into a 3D MOF. Structural characterization via synchrotron single-crystal X-ray diffraction (SCXRD) revealed the one-dimensional pore architecture of DUT-98, envisioned in silico. After supercritical solvent extraction, distinctive responses towards various gases stimulated reversible structural transformations, as detected using coupled synchrotron diffraction and physisorption techniques. DUT-98 shows a surprisingly low water uptake but a high selectivity for pore opening towards specific gases and vapors (N2 , CO2 , n-butane, alcohols) at characteristic pressure resulting in multiple steps in the adsorption isotherm and hysteretic behavior upon desorption.

17.
Phys Chem Chem Phys ; 18(30): 20607-14, 2016 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-27412621

RESUMO

Methane hydrate nucleation and growth in porous model carbon materials illuminates the way towards the design of an optimized solid-based methane storage technology. High-pressure methane adsorption studies on pre-humidified carbons with well-defined and uniform porosity show that methane hydrate formation in confined nanospace can take place at relatively low pressures, even below 3 MPa CH4, depending on the pore size and the adsorption temperature. The methane hydrate nucleation and growth is highly promoted at temperatures below the water freezing point, due to the lower activation energy in ice vs. liquid water. The methane storage capacity via hydrate formation increases with an increase in the pore size up to an optimum value for the 25 nm pore size model-carbon, with a 173% improvement in the adsorption capacity as compared to the dry sample. Synchrotron X-ray powder diffraction measurements (SXRPD) confirm the formation of methane hydrates with a sI structure, in close agreement with natural hydrates. Furthermore, SXRPD data anticipate a certain contraction of the unit cell parameter for methane hydrates grown in small pores.

18.
Inorg Chem ; 54(3): 1003-9, 2015 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-25490603

RESUMO

The linker functionalization strategy was applied to incorporate proline moieties into a metal-organic framework (MOF). When 4,4'-biphenyldicarboxylic acid was replaced with a Boc-protected proline-functionalized linker (H(2)L) in the synthesis of DUT-32 (DUT = Dresden University of Technology), a highly porous enantiomerically pure MOF (DUT-32-NHProBoc) was obtained, as could be confirmed by enantioselective high-performance liquid chromatography (HPLC) measurements and solid-state NMR experiments. Isotope labeling of the chiral side group proline enabled highly sensitive one- and two-dimensional solid-state (13)C NMR experiments. For samples loaded with (S)-1-phenyl-2,2,2-trifluoroethanol [(S)-TFPE], the proline groups are shown to exhibit a lower mobility than that for (R)-TFPE-loaded samples. This indicates a preferred interaction of the shift agent (S)-TFPE with the chiral moieties. The high porosity of the compound is reflected by an exceptionally high ethyl cinnamate adsorption capacity. However, postsynthetic thermal deprotection of Boc-proline in the MOF leads to racemization of the chiral center, which was verified by stereoselective HPLC experiments and asymmetric catalysis of aldol addition.


Assuntos
Compostos Organometálicos/química , Prolina/química , Adsorção , Compostos de Bifenilo/química , Catálise , Técnicas de Química Sintética , Cromatografia Líquida de Alta Pressão , Cinamatos/química , Ácidos Dicarboxílicos/química , Espectroscopia de Ressonância Magnética/métodos , Estrutura Molecular , Compostos Organometálicos/síntese química , Porosidade , Estereoisomerismo , Trifluoretanol/análogos & derivados , Trifluoretanol/química , Difração de Raios X
19.
Support Care Cancer ; 23(5): 1321-9, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25617073

RESUMO

PURPOSE: Recent meta-analyses showed that antibiotic prophylaxis in patients with neutropenia after chemotherapy reduced the incidence of fever and mortality rate. Fluoroquinolones appear to be most effective and well tolerated. Thus, in April 2008, we changed our antibiotic prophylaxis regimen from cotrimoxazole/colistin (COT/COL) to the fluoroquinolone ciprofloxacin (CIP) in patients with acute myeloid leukemia (AML). The aim of this retrospective study was to compare efficacy and development of bacterial resistance with two different prophylaxis regimens over a time period of more than 4 years. METHODS: Induction chemotherapy courses given for AML during the antibiotic prophylaxis period with COT/COL (01/2006-04/2008) and CIP (04/2008-06/2010) were retrospectively analyzed with a standard questionnaire. RESULTS: Eighty-five courses in the COT/COL group and 105 in the CIP group were analyzed. The incidence of fever was not significantly different (COT/COL 80 % vs CIP 77 %; p = 0.724). Also, the rate of microbiologically documented infections was nearly the same (29 vs 26 %; p = 0.625). In addition, there was no significant difference in the incidence of clinically documented infections (11 vs 19 %; p = 0.155) or in the rates of detected gram-positive and gram-negative bacteria. Of note, there was no increase in resistance rates or cases with Clostridium difficile-associated diarrhea in the CIP group. CONCLUSION: The antibiotic prophylaxis with CIP compared to COT/COL in AML was similarly effective with no increase in bacterial resistance. COT/COL may have the advantages of providing additional prophylaxis against Pneumocystis jirovecii pneumonia and leaving fluoroquinolones as an additional option for treatment of febrile neutropenia.


Assuntos
Antibacterianos/uso terapêutico , Antibioticoprofilaxia/métodos , Infecções Bacterianas/prevenção & controle , Ciprofloxacina/uso terapêutico , Colistina/uso terapêutico , Farmacorresistência Bacteriana , Leucemia Mieloide Aguda/tratamento farmacológico , Neutropenia/complicações , Combinação Trimetoprima e Sulfametoxazol/uso terapêutico , Adulto , Idoso , Antineoplásicos/efeitos adversos , Antineoplásicos/uso terapêutico , Clostridioides difficile/efeitos dos fármacos , Diarreia/microbiologia , Diarreia/prevenção & controle , Enterocolite Pseudomembranosa/prevenção & controle , Feminino , Febre/tratamento farmacológico , Fluoroquinolonas/uso terapêutico , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Neutropenia/induzido quimicamente , Pneumocystis carinii/efeitos dos fármacos , Pneumonia por Pneumocystis/prevenção & controle , Estudos Retrospectivos , Inquéritos e Questionários
20.
Adv Mater ; 36(4): e2305783, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37643306

RESUMO

Stimuli-responsive molecular systems support within permanently porous materials offer the opportunity to host dynamic functions in multifunctional smart materials. However, the construction of highly porous frameworks featuring external-stimuli responsiveness, for example by light excitation, is still in its infancy. Here a general strategy is presented to construct spiropyran-functionalized highly porous switchable aromatic frameworks by modular and high-precision anchoring of molecular hooks and an innovative in situ solid-state grafting approach. Three spiropyran-grafted frameworks bearing distinct functional groups exhibiting various stimuli-responsiveness are generated by two-step post-solid-state synthesis of a parent indole-based material. The quantitative transformation and preservation of high porosity are demonstrated by spectroscopic and gas adsorption techniques. For the first time, a highly efficient strategy is provided to construct multi-stimuli-responsive, yet structurally robust, spiropyran materials with high pore capacity which is proved essential for the reversible and quantitative isomerization in the bulk as demonstrated by solid-state NMR spectroscopy. The overall strategy allows to construct dynamic materials that undergoes reversible transformation of spiropyran to zwitterionic merocyanine, by chemical and physical stimulation, showing potential for pH active control, responsive gas uptake and release, contaminant removal, and water harvesting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA