Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Nano Lett ; 24(7): 2175-2180, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38181506

RESUMO

Silicene, a single layer of Si atoms, shares many remarkable electronic properties with graphene. So far, silicene has been synthesized in its epitaxial form on a few surfaces of solids. Thus, the problem of silicene-substrate interaction appears, which usually depresses the original electronic behavior but may trigger properties superior to those of bare components. We report the direct observation of robust Dirac-dispersed bands in epitaxial silicene grown on Au(111) films deposited on Si(111). By performing in-depth angle-resolved photoemission spectroscopy measurements, we reveal three pairs of one-dimensional bands with linear dispersion running in three different directions of an otherwise two-dimensional system. By combining these results with first-principles calculations, we explore the nature of these bands and point to strong interaction between subsystems forming a complex Si-Au heterostructure. These findings emphasize the essential role of interfacial coupling and open a unique materials platform for exploring exotic quantum phenomena and applications in future-generation nanoelectronics.

2.
J Org Chem ; 89(11): 8299-8304, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38747531

RESUMO

We report the high-yielding, large-scale, one-pot synthesis of two versatile building blocks (1-Cl and 1-Br) for the regioselective synthesis of a variety of 2,3,5-trisubstituted pyridines from inexpensive materials. These molecules are readily derivatized at positions 2, 3, and 5. These building blocks can also be used for the synthesis of fused pyrido-oxazines and for the synthesis of 2,3,4,5-tetrasubstituted pyridines.

3.
Nano Lett ; 23(21): 9894-9899, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37861984

RESUMO

Using molecular beam epitaxy, a new structural phase of a single atom thick antimony layer has been synthesized on the W(110) surface. Scanning tunneling microscopy measurements reveal an atomically resolved structure with a perfectly flat surface and unusually large unit cell. The structure forms a well-ordered continuous film with a lateral size in the range of several millimeters, as revealed by low energy electron microscopy and diffraction experiments. The results of density functional theory calculations confirm the formation of a new phase of single-atom-thick antimony film without the buckling characteristic for the known phases of antimonene. The presented results demonstrate a substrate-tuned approach in the preparation of new structural phases of 2D materials.

4.
Phys Chem Chem Phys ; 21(25): 13411-13414, 2019 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-31210208

RESUMO

Ion-induced desorption was successfully applied for the analysis of the stability of chemical bonds at the molecule-metal interface in the case of ionic bonding. The obtained experimental data combined with the results of the DFT calculations reveal the effect of positional oscillations in the stability of consecutive chemical bonds, which has general character in chemistry.

5.
J Org Chem ; 83(3): 1448-1461, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29323903

RESUMO

A chromatography-free, asymmetric synthesis of the C2-symmetric P-chiral diphosphine t-Bu-SMS-Phos was developed using a chiral auxiliary-based approach in five steps from the chiral auxiliary in 36% overall yield. Separtion and recovery of the auxiliary were achieved with good yield (97%) to enable recycling of the chiral auxiliary. An air-stable crystalline form of the final ligand was identified to enable isolation of the final ligand by crystallization to avoid chromatography. This synthetic route was applied to prepare up to 4 kg of the final ligand. The utility of this material was demonstrated in the asymmetric hydrogenation of trifluoromethyl vinyl acetate at 0.1 mol % Rh loading to access a surrogate for the pharmaceutically relavent chiral trifluoroisopropanol fragment in excellent yield and enantiomeric excess (98.6%).

6.
Phys Chem Chem Phys ; 19(22): 14269-14275, 2017 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-28537309

RESUMO

Freestanding silicene is a one-atom-thick two-dimensional material composed of Si atoms arranged in a honeycomb lattice that is related to graphene. Its low-buckled atomic structure facilitates the functionalization of silicene. We report on an alternative method of functionalization which utilizes one-dimensional long-range periodic structural deformation of silicene, and leads to rehybridization-induced sublattice-polarized charge density oscillations. The charge density modulation follows the structural deformation of silicene, and features opposite phases in different sublattices. The modulated atomic structure leads to anisotropy of electron group velocity and to opening of a band gap that grows and oscillates with increasing corrugation. We show that rippled silicene can be considered as a combination of a silicene nanoribbon and a part of a silicon nanotube. The existence of the charge density oscillation phase is a consequence of the layer corrugation and the tendency of silicon toward sp3 bonding. One-dimensional structural modulation appears to be a powerful method of silicene functionalization, and the predicted phase is expected to be realized in other two-dimensional materials, which prefer sp3 bonding.

7.
Nanotechnology ; 27(3): 032502, 2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26655605

RESUMO

The arrangement of molecules in molecular networks determines their physical and chemical properties. Addressing this fundamental issue requires proper structural characterization tools. Due to an overlap, interdigitation, tilting or stacking of molecules revealing the structure of the networks is challenging. Tebi et al (2015 Nanotechnology 27 025704) developed a clever approach that enables accessing the arrangement of individual molecules in complex chemical networks. The proposed method utilizes imaging and manipulation with scanning tunneling microscopy.

8.
Phys Chem Chem Phys ; 17(3): 2246-51, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25485668

RESUMO

First-principles density functional theory calculations of silicene deposited on a Pb(111) surface are reported. Several possible silicene superstructures, exhibiting different scanning tunnelling microscopy topography images have been found. All the structures feature low binding energy and very small charge transfer, thus interact weakly with the substrate. As a result linear band dispersion around the K points of the Brillouin zone survives and the bands have mainly 3p character of silicene with very little contribution of the 6p states of Pb. The present study suggests that lead can be the best candidate to host silicene among other metal substrates.

9.
Angew Chem Int Ed Engl ; 54(4): 1336-40, 2015 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-25475853

RESUMO

While it is a common concept in chemistry that strengthening of one bond results in weakening of the adjacent ones, no results have been published on if and how this effect protrudes further into the molecular backbone. By binding molecules to a surface in the form of a self-assembled monolayer, the strength of a primary bond can be selectively altered. Herein, we report that by using secondary-ion mass spectrometry, we are able to detect for the first time positional oscillations in the stability of consecutive bonds along the adsorbed molecule, with the amplitudes diminishing with increasing distance from the molecule-metal interface. To explain these observations, we have performed molecular dynamics simulations and DFT calculations. These show that the oscillation effects in chemical-bond stability have a very general nature and break the translational symmetry in molecules.

10.
ACS Nano ; 18(20): 12861-12869, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38712346

RESUMO

Indium-decorated Si atomic chains on a stepped Si(553)-Au substrate are proposed as an extended Su-Schrieffer-Heeger (SSH) model, revealing topological end states. An appropriate amount of In atoms on the Si(553)-Au surface induce the self-assembly formation of trimer SSH chains, where the chain unit cell comprises one In atom and two Si atoms, confirmed by scanning tunneling microscopy images and density functional calculations. The electronic structure of the system, examined through scanning tunneling spectroscopy, manifests three electron bands within the Si-In chain, accompanied by additional midgap topological states exclusively appearing at the chain's end atoms. To elucidate the emergence of these topological states, a tight-binding model for a finite-length-extended SSH chain is proposed. Analysis of the energy spectra, density of states functions, and eigenfunctions demonstrates the topological nature of these self-assembled atomic chains.

11.
Chem Commun (Camb) ; 60(7): 858-861, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38131529

RESUMO

Dithienoacenes with a heptacene core, heptaceno[2,3-b:11,12-b']bis[1]benzothiophene, have been synthesized through the combination of solution and surface assisted chemistry. The atomic composition, structural arrangement and electronic properties of the molecules on the Au(111) surface have been deeply explored by non-contact atomic force microscopy (nc-AFM), bond-resolved scanning tunnelling microscopy (BR-STM) and scanning tunneling spectroscopy (STS) corroborated by density functional theory (DFT) calculations. Our combined experiments reveal modifications induced by sulfur substitution.

12.
Chem Commun (Camb) ; 58(25): 4063-4066, 2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35262162

RESUMO

Cyclobuta[1,2-b:3,4-b']ditetracene - an analogue of nonacene with a cyclobutadiene unit embedded in the central part has been synthesized by the combination of solution and on-surface chemistry. The atomic structure and electronic properties of the product on Au(111) have been determined by high resolution scanning tunnelling microscopy/spectroscopy corroborated by density functional theory calculations. Structural and magnetic parameters derived from theoretical calculations reveal that π conjugation is dominated by radialene-type contribution, with an admixture of cyclobutadiene-like antiaromaticity.

13.
Materials (Basel) ; 15(5)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35268964

RESUMO

One-monolayer (ML) (thin) and 5-ML (thick) Si films were grown on the α-phase Si(111)√3 × âˆš3R30°-Bi at a low substrate temperature of 200 °C. Si films have been studied in situ by reflection electron energy loss spectroscopy (REELS) and Auger electron spectroscopy, as a function of the electron beam incidence angle α and low-energy electron diffraction (LEED), as well as ex situ by grazing incidence X-ray diffraction (GIXRD). Scanning tunneling microscopy (STM), and scanning tunneling spectroscopy (STS) were also reported. The REELS spectra, taken at the Si K absorption edge (~1.840 KeV), reveal the presence of two distinct loss structures attributed to transitions 1s→π* and 1s→σ* according to their intensity dependence on α, attesting to the sp2-like hybridization of the silicon valence orbitals in both thin and thick Si films. The synthesis of a silicon allotrope on the α-phase of Si(111)√3 × âˆš3R30°-Bi substrate was demonstrated by LEED patterns and GIXRD that discloses the presence of a Si stack of 3.099 (3) Å and a √3 × âˆš3 unit cell of 6.474 Å, typically seen for multilayer silicene. STM and STS measurements corroborated the findings. These measurements provided a platform for the new √3 × âˆš3R30° Si allotrope on a Si(111)√3 × âˆš3 R30°-Bi template, paving the way for realizing topological insulator heterostructures from different two-dimensional materials, Bi and Si.

14.
Nanomaterials (Basel) ; 11(10)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34685008

RESUMO

The adsorption and substitution of transition metal atoms (Fe and Co) on Au-supported planar silicene have been studied by means of first-principles density functional theory calculations. The structural, energetic and magnetic properties have been analyzed. Both dopants favor the same atomic configurations with rather strong binding energies and noticeable charge transfer. The adsorption of Fe and Co atoms do not alter the magnetic properties of Au-supported planar silicene, unless a full layer of adsorbate is completed. In the case of substituted system only Fe is able to produce magnetic ground state. The Fe-doped Au-supported planar silicene is a ferromagnetic structure with local antiferromagnetic ordering. The present study is the very first and promising attempt towards ferromagnetic epitaxial planar silicene and points to the importance of the substrate in structural and magnetic properties of silicene.

15.
Org Lett ; 23(11): 4396-4399, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-33988373

RESUMO

The addition of carbamoyl anions to azirines affords synthetically useful 2-aziridinyl amide building blocks. The reaction scope was explored with respect to both formamide and azirine, and the addition was found to be highly diastereoselective. A one-pot conversion of a ketoxime to an aziridinyl amide was demonstrated. The method was employed to incorporate an aziridine residue into a dipeptide segment.

16.
Nanoscale Horiz ; 5(4): 679-682, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32226967

RESUMO

The discovery of graphene with its massless fermions established a new branch of nanomaterials in which linear bands can be realized. It has been predicted that beside Dirac fermions revealing isotropic character and observed in a number of two-dimensional materials, another class of massless fermions can also be found: strongly anisotropic fortune teller-like states which form planes instead of cones in the electronic structure. Here, we demonstrate that such distinct electronic structures exist and can be found in a surface layer of silicon.

17.
Materials (Basel) ; 12(14)2019 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-31337057

RESUMO

We report new findings on multilayer silicene grown on Si(111)√3 × âˆš3 R30°-Ag template, after the recent first compelling experimental evidence of its synthesis. Low-energy electron diffraction, reflection high-energy electron diffraction, and energy-dispersive grazing incidence X-ray diffraction measurements were performed to show up the fingerprints of √3 × âˆš3 multilayer silicene. Angle-resolved photoemission spectroscopy displayed new features in the second surface Brillouin zone, attributed to the multilayer silicene on Si(111)√3 × âˆš3 R30°-Ag. Band-structure dispersion theoretical calculations performed on a model of three honeycomb stacked layers, silicene grown on Si(111)√3 × âˆš3 R30°-Ag surface confirm the experimental results.

18.
J Med Chem ; 62(22): 10272-10293, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31689114

RESUMO

The epidermal growth factor receptor (EGFR), when carrying an activating mutation like del19 or L858R, acts as an oncogenic driver in a subset of lung tumors. While tumor responses to tyrosine kinase inhibitors (TKIs) are accompanied by marked tumor shrinkage, the response is usually not durable. Most patients relapse within two years of therapy often due to acquisition of an additional mutation in EGFR kinase domain that confers resistance to TKIs. Crucially, oncogenic EGFR harboring both resistance mutations, T790M and C797S, can no longer be inhibited by currently approved EGFR TKIs. Here, we describe the discovery of BI-4020, which is a noncovalent, wild-type EGFR sparing, macrocyclic TKI. BI-4020 potently inhibits the above-described EGFR variants and induces tumor regressions in a cross-resistant EGFRdel19 T790M C797S xenograft model. Key was the identification of a highly selective but moderately potent benzimidazole followed by complete rigidification of the molecule through macrocyclization.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Animais , Antineoplásicos/farmacocinética , Benzimidazóis/química , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Cristalografia por Raios X , Ciclização , Entropia , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/química , Receptores ErbB/genética , Feminino , Hepatócitos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Transgênicos , Mutação , Conformação Proteica , Inibidores de Proteínas Quinases/farmacocinética , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
19.
J Phys Condens Matter ; 30(23): 233003, 2018 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-29708504

RESUMO

The great success of graphene has boosted intensive search for other single-layer thick materials, mainly composed of group-14 atoms arranged in a honeycomb lattice. This new class of two-dimensional (2D) crystals, known as 2D-Xenes, has become an emerging field of intensive research due to their remarkable electronic properties and the promise for a future generation of nanoelectronics. In contrast to graphene, Xenes are not completely planar, and feature a low buckled geometry with two sublattices displaced vertically as a result of the interplay between sp2 and sp3 orbital hybridization. In spite of the buckling, the outstanding electronic properties of graphene governed by Dirac physics are preserved in Xenes too. The buckled structure also has several advantages over graphene. Together with the spin-orbit (SO) interaction it may lead to the emergence of various experimentally accessible topological phases, like the quantum spin Hall effect. This in turn would lead to designing and building new electronic and spintronic devices, like topological field effect transistors. In this regard an important issue concerns the electron energy gap, which for Xenes naturally exists owing to the buckling and SO interaction. The electronic properties, including the magnitude of the energy gap, can further be tuned and controlled by external means. Xenes can easily be functionalized by substrate, chemical adsorption, defects, charge doping, external electric field, periodic potential, in-plane uniaxial and biaxial stress, and out-of-plane long-range structural deformation, to name a few. This topical review explores structural, electronic and magnetic properties of Xenes and addresses the question of their functionalization in various ways, including external factors acting simultaneously. It also points to future directions to be explored in functionalization of Xenes. The results of experimental and theoretical studies obtained so far have many promising features making the 2D-Xene materials important players in the field of future nanoelectronics and spintronics.

20.
Beilstein J Nanotechnol ; 8: 1836-1843, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29046832

RESUMO

A structural model of the recently observed silicene-like nanoribbons on a Pb-induced √3 × âˆš3 reconstructed Si(111) surface is proposed. The model, which is based on first principles density functional theory calculations, features a deformed honeycomb structure directly bonded to the Si(111) surface underneath. Pb atoms stabilize the nanoribbons, as they passivate the uncovered substrate, thus lower the surface energy, and suppress the nanoribbon-substrate interaction. The proposed structural model reproduces well all the experimental findings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA