RESUMO
Carbohydrates, or glycans, are as integral to biology as nucleic acids and proteins. In immunology, glycans are well known to drive diverse functions ranging from glycosaminoglycan-mediated chemokine presentation and selectin-dependent leukocyte trafficking to the discrimination of self and non-self through the recognition of sialic acids by Siglec (sialic acid-binding Ig-like lectin) receptors. In recent years, a number of key immunological discoveries are driving a renewed and burgeoning appreciation for the importance of glycans. In this review, we highlight these findings which collectively help to define and refine our knowledge of the function and impact of glycans within the immune response.
Assuntos
Imunidade/imunologia , Polissacarídeos/imunologia , Animais , Quimiocinas/imunologia , Humanos , Leucócitos/imunologia , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/imunologiaRESUMO
The carbohydrate antigen (glycoantigen) PSA from an intestinal commensal bacteria is able to down-regulate inflammatory bowel disease in model mice, suggesting that stimulation with PSA results in regulatory T cell (Treg) generation. However, mechanisms of how peripheral human T cells respond and home in response to commensal antigens are still not understood. Here, we demonstrate that a single exposure to PSA induces differentiation of human peripheral CD4(+) T cells into type-Tr1 Tregs. This is in contrast to mouse models where PSA induced the production of Foxp3(+) iTregs. The human PSA-induced Tr1 cells are profoundly anergic and exhibit nonspecific bystander suppression mediated by IL-10 secretion. Most surprisingly, glycoantigen exposure provoked expression of gut homing receptors on their surface. These findings reveal a mechanism for immune homeostasis in the gut whereby exposure to commensal glycoantigens provides the requisite information to responding T cells for proper tissue localization (gut) and function (anti-inflammatory/regulatory).
Assuntos
Antígenos de Bactérias/imunologia , Carboidratos/imunologia , Diferenciação Celular/imunologia , Interleucina-10/imunologia , Intestinos/imunologia , Linfócitos T Reguladores/imunologia , Animais , Antígenos de Bactérias/metabolismo , Efeito Espectador/imunologia , Homeostase/imunologia , Humanos , Interleucina-10/metabolismo , Intestinos/citologia , Camundongos , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/metabolismoRESUMO
Morganella morganii is a commensal Gram-negative bacterium that has long been known to produce an antigen bearing phosphocholine groups. We determined the structure of this O-chain antigen and found that its repeating unit also contains a free amino group and a second phosphate: This alternating charge character places the M. morganii O-chain polysaccharide into a small family of zwitterionic polysaccharides (ZPSs) known to induce T-cell-dependent immune responses via presentation by class II major histocompatibility complex (MHCII) molecules. In vitro binding assays demonstrate that this O-chain interacts with MHCII in a manner that competes with binding of the prototypical ZPS antigen PSA from Bacteroides fragilis, despite its lack of a helical structure. Cellular studies also showed that the M. morganii polysaccharide induces activation of CD4(+) T-cells. Antibody binding experiments using acid hydrolyzed fragments representing the monomer and higher oligomers of the repeating unit showed that the phosphocholine group was the dominant element of the epitope with an overall affinity (K(D)) of about 5 × 10(-5) M, a typical value for an IgM anti-carbohydrate antibody but much lower than the affinity for phosphocholine itself. These data show that the structure of the M. morganii polysaccharide contains a unique zwitterionic repeating unit which allows for immune recognition by T-cells, making it the first identified T-cell-dependent O-chain antigen.
Assuntos
Antígenos de Histocompatibilidade Classe II/química , Antígenos de Histocompatibilidade Classe II/imunologia , Morganella morganii/imunologia , Antígenos O/química , Antígenos O/imunologia , Sítios de Ligação , Linfócitos T CD4-Positivos/imunologia , Humanos , Íons , Cinética , Morganella morganii/metabolismo , Antígenos O/metabolismoRESUMO
While Toll-like receptors (TLRs) represent one of the best characterized innate immune pathways, evidence suggests that TLRs are not restricted to innate leukocytes and some epithelial cells, but are also expressed in T cells. Specifically, published evidence focusing on FoxP3+ regulatory T cells demonstrate that they express functional TLR2, which is already known among the TLR family for its association with immune suppression; however, little is known about the relationship between T cell-intrinsic TLR2 binding and cytokine production, T cell differentiation, or T cell receptor (TCR) stimulation. Here, we demonstrate that TCR and TLR2 co-stimulation provides a T cell-intrinsic signal which generates a dramatic, synergistic cytokine response dominated by IL-10. Importantly, the response was not seen in either CD4+CD25+ or CD4+FoxP3+ Tregs, yet resulted in the expansion of a suppressive CD4+CD25+CD62L-CD44+CD45Rbhi effector/memory T cell subset not typically associated with immune inhibition. This study reveals the striking ability of a prototypical innate immune receptor to trigger a potent and suppressive IL-10 response in effector/memory T cells, supporting the notion that TLR2 is a co-regulatory receptor on T cells.
Assuntos
Interleucina-10/imunologia , Antígenos Comuns de Leucócito/imunologia , Linfócitos T Reguladores/imunologia , Receptor 2 Toll-Like/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Células Cultivadas , Feminino , Subunidade alfa de Receptor de Interleucina-2/imunologia , Masculino , Camundongos Endogâmicos C57BL , Receptores de Antígenos de Linfócitos T/imunologiaRESUMO
Studies centered on understanding how molecular structure affects biological function have historically focused on proteins. Circular dichroism (CD) is commonly used to analyze protein secondary structure, yet its application to other molecules is far less explored. In fact, little is known about how glycan conformation might affect function, likely because of a lack of tools for measuring dynamic structural changes of carbohydrates. In the present study, we developed a method based on CD to monitor conformational changes in the zwitterionic T-cell-activating glycoantigen polysaccharide A1 (PSA). We found that PSA helical structure produces a CD spectrum that is strikingly similar to proteins rich in alpha-helical content and is equally sensitive to nonpolar solvents. Like conventional T-cell-dependent proteins, PSA requires processing before major histocompatibility complex class II (MHCII) binding. CD spectra of PSA fragments of varying sizes indicated that fragments smaller than three repeating units lack helical content and are incapable of MHCII binding. Likewise, neutralization of charged groups in the repeating unit resulted in major conformational changes as measured by CD, which correlated with a lack of MHCII presentation. These data represent two significant findings: CD can be used to measure conformational changes in carbohydrates and the functional epitope from PSA is dependent on a specific conformation that is stabilized by adjacent repeating units and a zwitterionic charge motif. As a result, this work demonstrates that CD is a valuable tool for use in functional glycomics efforts that seek to align chemical and conformational structure with biological activity.