Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(18)2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37762012

RESUMO

Mitochondrial adenine nucleotide translocase (ANT) exchanges ADP for ATP to maintain energy production in the cell. Its protonophoric function in the presence of long-chain fatty acids (FA) is also recognized. Our previous results imply that proton/FA transport can be best described with the FA cycling model, in which protonated FA transports the proton to the mitochondrial matrix. The mechanism by which ANT1 transports FA anions back to the intermembrane space remains unclear. Using a combined approach involving measurements of the current through the planar lipid bilayers reconstituted with ANT1, site-directed mutagenesis and molecular dynamics simulations, we show that the FA anion is first attracted by positively charged arginines or lysines on the matrix side of ANT1 before moving along the positively charged protein-lipid interface and binding to R79, where it is protonated. We show that R79 is also critical for the competitive binding of ANT1 substrates (ADP and ATP) and inhibitors (carboxyatractyloside and bongkrekic acid). The binding sites are well conserved in mitochondrial SLC25 members, suggesting a general mechanism for transporting FA anions across the inner mitochondrial membrane.


Assuntos
Bicamadas Lipídicas , Prótons , Ácidos Graxos/metabolismo , Translocases Mitocondriais de ADP e ATP/metabolismo , Ânions/metabolismo , Trifosfato de Adenosina/metabolismo
2.
Int J Mol Sci ; 22(3)2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33530558

RESUMO

Molecular dynamics (MD) simulations of uncoupling proteins (UCP), a class of transmembrane proteins relevant for proton transport across inner mitochondrial membranes, represent a complicated task due to the lack of available structural data. In this work, we use a combination of homology modelling and subsequent microsecond molecular dynamics simulations of UCP2 in the DOPC phospholipid bilayer, starting from the structure of the mitochondrial ATP/ADP carrier (ANT) as a template. We show that this protocol leads to a structure that is impermeable to water, in contrast to MD simulations of UCP2 structures based on the experimental NMR structure. We also show that ATP binding in the UCP2 cavity is tight in the homology modelled structure of UCP2 in agreement with experimental observations. Finally, we corroborate our results with conductance measurements in model membranes, which further suggest that the UCP2 structure modeled from ANT protein possesses additional key functional elements, such as a fatty acid-binding site at the R60 region of the protein, directly related to the proton transport mechanism across inner mitochondrial membranes.


Assuntos
Proteínas Mitocondriais/química , Simulação de Dinâmica Molecular , Conformação Proteica , Proteína Desacopladora 2/química , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Animais , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Transporte de Íons , Proteínas de Membrana/química , Camundongos , Proteínas Mitocondriais/metabolismo , Ligação Proteica , Estabilidade Proteica , Relação Estrutura-Atividade , Proteína Desacopladora 2/metabolismo
3.
Int J Mol Sci ; 22(5)2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33801254

RESUMO

Adenine nucleotide translocase (ANT) is a well-known mitochondrial exchanger of ATP against ADP. In contrast, few studies have shown that ANT also mediates proton transport across the inner mitochondrial membrane. The results of these studies are controversial and lead to different hypotheses about molecular transport mechanisms. We hypothesized that the H+-transport mediated by ANT and uncoupling proteins (UCP) has a similar regulation pattern and can be explained by the fatty acid cycling concept. The reconstitution of purified recombinant ANT1 in the planar lipid bilayers allowed us to measure the membrane current after the direct application of transmembrane potential ΔΨ, which would correspond to the mitochondrial states III and IV. Experimental results reveal that ANT1 does not contribute to a basal proton leak. Instead, it mediates H+ transport only in the presence of long-chain fatty acids (FA), as already known for UCPs. It depends on FA chain length and saturation, implying that FA's transport is confined to the lipid-protein interface. Purine nucleotides with the preference for ATP and ADP inhibited H+ transport. Specific inhibitors of ATP/ADP transport, carboxyatractyloside or bongkrekic acid, also decreased proton transport. The H+ turnover number was calculated based on ANT1 concentration determined by fluorescence correlation spectroscopy and is equal to 14.6 ± 2.5 s-1. Molecular dynamic simulations revealed a large positively charged area at the protein/lipid interface that might facilitate FA anion's transport across the membrane. ANT's dual function-ADP/ATP and H+ transport in the presence of FA-may be important for the regulation of mitochondrial membrane potential and thus for potential-dependent processes in mitochondria. Moreover, the expansion of proton-transport modulating drug targets to ANT1 may improve the therapy of obesity, cancer, steatosis, cardiovascular and neurodegenerative diseases.


Assuntos
Translocador 1 do Nucleotídeo Adenina/química , Translocador 1 do Nucleotídeo Adenina/metabolismo , Ácidos Graxos/metabolismo , Mitocôndrias/metabolismo , Prótons , Animais , Transporte de Íons , Potencial da Membrana Mitocondrial , Camundongos , Conformação Proteica
4.
Biophys J ; 117(10): 1845-1857, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31706565

RESUMO

Genipin, a natural compound from Gardenia jasminoides, is a well-known compound in Chinese medicine that is used for the treatment of cancer, inflammation, and diabetes. The use of genipin in classical medicine is hindered because of its unknown molecular mechanisms of action apart from its strong cross-linking ability. Genipin is increasingly applied as a specific inhibitor of proton transport mediated by mitochondrial uncoupling protein 2 (UCP2). However, its specificity for UCP2 is questionable, and the underlying mechanism behind its action is unknown. Here, we investigated the effect of genipin in different systems, including neuroblastoma cells, isolated mitochondria, isolated mitochondrial proteins, and planar lipid bilayer membranes reconstituted with recombinant proteins. We revealed that genipin activated dicarboxylate carrier and decreased the activity of UCP1, UCP3, and complex III of the respiratory chain alongside with UCP2 inhibition. Based on competitive inhibition experiments, the use of amino acid blockers, and site-directed mutagenesis of UCP1, we propose a mechanism of genipin's action on UCPs. At low concentrations, genipin binds to arginine residues located in the UCP funnel, which leads to a decrease in UCP's proton transporting function in the presence of long chain fatty acids. At concentrations above 200 µM, the inhibitory action of genipin on UCPs is overlaid by increased nonspecific membrane conductance due to the formation of protein-genipin aggregates. Understanding the concentration-dependent mechanism of genipin action in cells will allow its targeted application as a drug in the above-mentioned diseases.


Assuntos
Iridoides/farmacologia , Proteínas Mitocondriais/metabolismo , Aminoácidos/metabolismo , Animais , Linhagem Celular Tumoral , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Humanos , Transporte de Íons/efeitos dos fármacos , Íons , Iridoides/química , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Prótons , Proteína Desacopladora 1/metabolismo , Proteína Desacopladora 2/metabolismo
5.
Biochim Biophys Acta Biomembr ; 1860(3): 664-672, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29212043

RESUMO

Mitochondrial membrane uncoupling protein 3 (UCP3) is not only expressed in skeletal muscle and heart, but also in brown adipose tissue (BAT) alongside UCP1, which facilitates a proton leak to support non-shivering thermogenesis. In contrast to UCP1, the transport function and molecular mechanism of UCP3 regulation are poorly investigated, although it is generally agreed upon that UCP3, analogous to UCP1, transports protons, is activated by free fatty acids (FFAs) and is inhibited by purine nucleotides (PNs). Because the presence of two similar uncoupling proteins in BAT is surprising, we hypothesized that UCP1 and UCP3 are differently regulated, which may lead to differences in their functions. By combining atomic force microscopy and electrophysiological measurements of recombinant proteins reconstituted in planar bilayer membranes, we compared the level of protein activity with the bond lifetimes between UCPs and PNs. Our data revealed that, in contrast to UCP1, UCP3 can be fully inhibited by all PNs and IC50 increases with a decrease in PN-phosphorylation. Experiments with mutant proteins demonstrated that the conserved arginines in the PN-binding pocket are involved in the inhibition of UCP1 and UCP3 to different extents. Fatty acids compete with all PNs bound to UCP1, but only with ATP bound to UCP3. We identified phosphate as a novel inhibitor of UCP3 and UCP1, which acts independently of PNs. The differences in molecular mechanisms of the inhibition between the highly homologous transporters UCP1 and UCP3 indicate that UCP3 has adapted to fulfill a different role and possibly another transport function in BAT.


Assuntos
Nucleotídeos de Adenina/farmacologia , Fosfatos/farmacologia , Proteína Desacopladora 1/antagonistas & inibidores , Proteína Desacopladora 3/antagonistas & inibidores , Animais , Arginina/química , Ligação Competitiva , Ácidos Graxos/farmacologia , Bicamadas Lipídicas , Lipossomos , Camundongos , Microscopia de Força Atômica , Mutagênese Sítio-Dirigida , Prótons , Proteínas Recombinantes/efeitos dos fármacos , Proteína Desacopladora 1/genética , Proteína Desacopladora 3/genética
6.
Acta Physiol (Oxf) ; 240(6): e14143, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38577966

RESUMO

AIMS: Metabolic reprogramming in cancer cells has been linked to mitochondrial dysfunction. The mitochondrial 2-oxoglutarate/malate carrier (OGC) has been suggested as a potential target for preventing cancer progression. Although OGC is involved in the malate/aspartate shuttle, its exact role in cancer metabolism remains unclear. We aimed to investigate whether OGC may contribute to the alteration of mitochondrial inner membrane potential by transporting protons. METHODS: The expression of OGC in mouse tissues and cancer cells was investigated by PCR and Western blot analysis. The proton transport function of recombinant murine OGC was evaluated by measuring the membrane conductance (Gm) of planar lipid bilayers. OGC-mediated substrate transport was measured in proteoliposomes using 14C-malate. RESULTS: OGC increases proton Gm only in the presence of natural (long-chain fatty acids, FA) or chemical (2,4-dinitrophenol) protonophores. The increase in OGC activity directly correlates with the increase in the number of unsaturated bonds of the FA. OGC substrates and inhibitors compete with FA for the same protein binding site. Arginine 90 was identified as a critical amino acid for the binding of FA, ATP, 2-oxoglutarate, and malate, which is a first step towards understanding the OGC-mediated proton transport mechanism. CONCLUSION: OGC extends the family of mitochondrial transporters with dual function: (i) metabolite transport and (ii) proton transport facilitated in the presence of protonophores. Elucidating the contribution of OGC to uncoupling may be essential for the design of targeted drugs for the treatment of cancer and other metabolic diseases.


Assuntos
2,4-Dinitrofenol , Ácidos Graxos , Animais , 2,4-Dinitrofenol/farmacologia , Camundongos , Ácidos Graxos/metabolismo , Humanos , Malatos/metabolismo , Mitocôndrias/metabolismo , Transporte de Íons/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Prótons , Ácidos Cetoglutáricos/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos/genética , Proteínas de Membrana Transportadoras
7.
Biomolecules ; 14(1)2023 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-38254621

RESUMO

Uncoupling protein 3 (UCP3) belongs to the mitochondrial carrier protein superfamily SLC25 and is abundant in brown adipose tissue (BAT), the heart, and muscles. The expression of UCP3 in tissues mainly dependent on fatty acid oxidation suggests its involvement in cellular metabolism and has drawn attention to its possible transport function beyond the transport of protons in the presence of fatty acids. Based on the high homology between UCP2 and UCP3, we hypothesized that UCP3 transports C4 metabolites similar to UCP2. To test this, we measured the transport of substrates against phosphate (32Pi) in proteoliposomes reconstituted with recombinant murine UCP3 (mUCP3). We found that mUCP3 mainly transports aspartate and sulfate but also malate, malonate, oxaloacetate, and succinate. The transport rates calculated from the exchange of 32Pi against extraliposomal aspartate and sulfate were 23.9 ± 5.8 and 17.5 ± 5.1 µmol/min/mg, respectively. Using site-directed mutagenesis, we revealed that mutation of R84 resulted in impaired aspartate/phosphate exchange, demonstrating its critical role in substrate transport. The difference in substrate preference between mUCP2 and mUCP3 may be explained by their different tissue expression patterns and biological functions in these tissues.


Assuntos
Tecido Adiposo Marrom , Ácido Aspártico , Proteína Desacopladora 3 , Animais , Camundongos , Fosfatos , Sulfatos , Proteína Desacopladora 3/metabolismo , Proteína Desacopladora 2/metabolismo
8.
Biomolecules ; 11(8)2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34439844

RESUMO

2,4-Dinitrophenol (DNP) is a classic uncoupler of oxidative phosphorylation in mitochondria which is still used in "diet pills", despite its high toxicity and lack of antidotes. DNP increases the proton current through pure lipid membranes, similar to other chemical uncouplers. However, the molecular mechanism of its action in the mitochondria is far from being understood. The sensitivity of DNP's uncoupling action in mitochondria to carboxyatractyloside, a specific inhibitor of adenine nucleotide translocase (ANT), suggests the involvement of ANT and probably other mitochondrial proton-transporting proteins in the DNP's protonophoric activity. To test this hypothesis, we investigated the contribution of recombinant ANT1 and the uncoupling proteins UCP1-UCP3 to DNP-mediated proton leakage using the well-defined model of planar bilayer lipid membranes. All four proteins significantly enhanced the protonophoric effect of DNP. Notably, only long-chain free fatty acids were previously shown to be co-factors of UCPs and ANT1. Using site-directed mutagenesis and molecular dynamics simulations, we showed that arginine 79 of ANT1 is crucial for the DNP-mediated increase of membrane conductance, implying that this amino acid participates in DNP binding to ANT1.


Assuntos
2,4-Dinitrofenol/farmacologia , Bicamadas Lipídicas/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Translocases Mitocondriais de ADP e ATP/metabolismo , Proteínas de Desacoplamento Mitocondrial/metabolismo , Animais , Camundongos , Ratos
9.
Biomolecules ; 10(5)2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32365477

RESUMO

Several mitochondrial proteins, such as adenine nucleotide translocase (ANT), aspartate/glutamate carrier, dicarboxylate carrier, and uncoupling proteins 2 and 3, are suggested to have dual transport functions. While the transport of charge (protons and anions) is characterized by an alteration in membrane conductance, investigating substrate transport is challenging. Currently, mainly radioactively labeled substrates are used, which are very expensive and require stringent precautions during their preparation and use. We present and evaluate a fluorescence-based method using Magnesium Green (MgGrTM), a Mg2+-sensitive dye suitable for measurement in liposomes. Given the different binding affinities of Mg2+ for ATP and ADP, changes in their concentrations can be detected. We obtained an ADP/ATP exchange rate of 3.49 ± 0.41 mmol/min/g of recombinant ANT1 reconstituted into unilamellar liposomes, which is comparable to values measured in mitochondria and proteoliposomes using a radioactivity assay. ADP/ATP exchange calculated from MgGrTM fluorescence solely depends on the ANT1 content in liposomes and is inhibited by the ANT-specific inhibitors, bongkrekic acid and carboxyatractyloside. The application of MgGrTM to investigate ADP/ATP exchange rates contributes to our understanding of ANT function in mitochondria and paves the way for the design of other substrate transport assays.


Assuntos
Translocador 1 do Nucleotídeo Adenina/metabolismo , Fluorometria/métodos , Lipossomas Unilamelares/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Corantes Fluorescentes , Glicina/análogos & derivados , Cinética , Magnésio/metabolismo , Camundongos , Proteínas Recombinantes/metabolismo , Xantenos
10.
J Vis Exp ; (143)2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30663681

RESUMO

To date, more than 50% of all pharmacological drugs target the transport kinetics of membrane proteins. The electrophysiological characterization of membrane carrier proteins reconstituted in lipid bilayer membranes is a powerful but delicate method for the assessment of their physicochemical and pharmacological properties. The substrate turnover number is a unique parameter that allows the comparison of the activity of different membrane proteins. In an electrogenic transport, the gradient of the translocated substrate creates a membrane potential that directly correlates to the substrate turnover rate of the protein. By using silver chloride electrodes, a diffusion potential, also called liquid junction potential, is induced, which alters electrode potential and significantly disturbs precise membrane potential measurements. Diffusion potential can be minimized by a salt bridge, which balances electrode potential. In this article, a micro-agar salt bridge is designed to improve the electrophysiological set-up, which uses micropipettes for the membrane formation. The salt solution is filled into a microcapillary pipette tip, stabilized by the addition of agarose, and can be easily mounted to a standard electrode. The electrode potential of a micro-salt bridge electrode is more stable compared to a standard electrode. The implementation of this system stabilizes electrode potential and allows more precise measurements of membrane potential generated by a pH gradient. Using this system, the proton turnover rates of the mitochondrial carriers UCP1 and UCP3 are reinvestigated and compared to earlier measurements.


Assuntos
Eletrodos , Proteínas de Membrana/química , Ágar , Difusão , Cinética , Bicamadas Lipídicas , Potenciais da Membrana/fisiologia , Prótons , Proteínas Recombinantes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA