Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Vis ; 17(14): 8, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29228141

RESUMO

Size adaptation describes the tendency of the visual system to adjust neural responsiveness of size representations after prolonged exposure to particular stimulations. A larger (or smaller) adaptor stimulus influences the perceived size of a similar test stimulus shown subsequently. Size adaptation may emerge on various processing levels. Functional representations of the adaptor to which the upcoming stimulus is adapted may be coded early in the visual system mainly reflecting retinal size. Alternatively, size adaptation may involve higher order processes that take into account additional information such as an object's estimated distance from the observer, hence reflecting perceived size. The present study investigated whether size adaptation is based on the retinal or the perceived size of an adaptor stimulus. A stimulus' physical and perceived sizes were orthogonally varied using perceived depth via binocular disparity, employing polarized 3D glasses. Four different adaptors were used, which varied in physical size, perceived size, or both. Two pairs of adaptors which were identical in physical size did not cause significantly different adaptation effects although they elicited different perceived sizes which were sufficiently large to produce differential aftereffects when induced by stimuli that physically differed in size. In contrast, there was a significant aftereffect when adaptors differed in physical size but were matched in perceived size. Size adaptation was thus unaffected by perceived size and binocular disparity. Our data suggest that size adaptation emerges from neural stages where information from both eyes is still coded in separate channels without binocular interactions, such as the lateral geniculate nucleus.


Assuntos
Adaptação Ocular/fisiologia , Percepção de Tamanho/fisiologia , Adolescente , Adulto , Percepção de Profundidade/fisiologia , Feminino , Humanos , Masculino , Estimulação Luminosa , Retina/fisiologia , Disparidade Visual/fisiologia , Adulto Jovem
2.
J Cogn Neurosci ; 27(7): 1334-43, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25603028

RESUMO

The spatial and temporal context of an object influence its perceived size. Two visual illusions illustrate this nicely: the size adaptation effect and the Ebbinghaus illusion. Whereas size adaptation affects size rescaling of a target circle via a previously presented, differently sized adaptor circle, the Ebbinghaus illusion alters perceived size by virtue of surrounding circles. In the classical Ebbinghaus setting, the surrounding circles are shown simultaneously with the target. However, size underestimation persists when the surrounding circles precede the target. Such a temporal separation of inducer and target circles in both illusions permits the comparison of BOLD signals elicited by two displays that, although objectively identical, elicit different percepts. The current study combined both illusions in a factorial design to identify a presumed common central mechanism involved in rescaling retinal into perceived size. At the behavioral level, combining both illusions did not affect perceived size further. At the neural level, however, this combination induced functional activation beyond that induced by either illusion separately: An underadditive activation pattern was found within left lingual gyrus, right supramarginal gyrus, and right superior parietal cortex. These findings provide direct behavioral and functional evidence for the presence of a neural bottleneck in rescaling retinal into perceived size, a process vital for visual perception.


Assuntos
Encéfalo/fisiologia , Ilusões Ópticas/fisiologia , Percepção de Tamanho/fisiologia , Percepção Visual/fisiologia , Adulto , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Testes Neuropsicológicos , Estimulação Luminosa , Vias Visuais/fisiologia , Adulto Jovem
3.
NMR Biomed ; 28(4): 423-31, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25703088

RESUMO

Our main objective was to evaluate the repeatability and reproducibility of optic radiation (OR) reconstruction from diffusion MRI (dMRI) data. 14 adults were scanned twice with the same 60-direction dMRI sequence. Peaks in the diffusion profile were estimated with the single tensor (ST), Q-ball (QSH) and persistent angular structure (PAS) methods. Segmentation of the OR was performed by two experimenters with probabilistic tractography based on a manually drawn region-of-interest (ROI) protocol typically employed for OR segmentation, with both standard and extended sets of ROIs. The repeatability and reproducibility were assessed by calculating the intra-class correlation coefficient (ICC) of intra- and inter-rater experiments, respectively. ICCs were calculated for commonly used dMRI metrics (FA, MD, AD, RD) and anatomical dimensions of the optic radiation (distance from Meyer's loop to the temporal pole, ML-TP), as well as the Dice similarity coefficient (DSC) between the raters' OR segmentation. Bland-Altman plots were also calculated to investigate bias and variability in the reproducibility measurements. The OR was successfully reconstructed in all subjects by both raters. The ICC was found to be in the good to excellent range for both repeatability and reproducibility of the dMRI metrics, DSC and ML-TP distance. The Bland-Altman plots did not show any apparent systematic bias for any quantities. Overall, higher ICC values were found for the multi-fiber methods, QSH and PAS, and for the standard set of ROIs. Considering the good to excellent repeatability and reproducibility of all the quantities investigated, these findings support the use of multi-fiber OR reconstruction with a limited number of manually drawn ROIs in clinical applications utilizing either OR microstructure characterization or OR dimensions, as is the case in neurosurgical planning for temporal lobectomy.


Assuntos
Imagem de Difusão por Ressonância Magnética/métodos , Imagem de Tensor de Difusão/métodos , Processamento de Imagem Assistida por Computador/métodos , Vias Visuais/anatomia & histologia , Substância Branca/anatomia & histologia , Adulto , Idoso , Antropometria , Feminino , Corpos Geniculados/anatomia & histologia , Humanos , Masculino , Pessoa de Meia-Idade , Variações Dependentes do Observador , Reprodutibilidade dos Testes , Córtex Visual/anatomia & histologia , Adulto Jovem
4.
J Vis ; 15(15): 10, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26575196

RESUMO

The current study determined in healthy subjects (n = 16) whether size adaptation occurs at early, i.e., preattentive, levels of processing or whether higher cognitive processes such as attention can modulate the illusion. To investigate this issue, bottom-up stimulation was kept constant across conditions by using a single adaptation display containing both small and large adapter stimuli. Subjects' attention was directed to either the large or small adapter stimulus by means of a luminance detection task. When attention was directed toward the small as compared to the large adapter, the perceived size of the subsequent target was significantly increased. Data suggest that different size adaptation effects can be induced by one and the same stimulus depending on the current allocation of attention. This indicates that size adaptation is subject to attentional modulation. These findings are in line with previous research showing that transient as well as sustained attention modulates visual features, such as contrast sensitivity and spatial frequency, and influences adaptation in other contexts, such as motion adaptation (Alais & Blake, 1999; Lankheet & Verstraten, 1995). Based on a recently suggested model (Pooresmaeili, Arrighi, Biagi, & Morrone, 2013), according to which perceptual adaptation is based on local excitation and inhibition in V1, we conclude that guiding attention can boost these local processes in one or the other direction by increasing the weight of the attended adapter. In sum, perceptual adaptation, although reflected in changes of neural activity at early levels (as shown in the aforementioned study), is nevertheless subject to higher-order modulation.


Assuntos
Adaptação Ocular/fisiologia , Atenção/fisiologia , Percepção de Tamanho/fisiologia , Adulto , Sensibilidades de Contraste/fisiologia , Feminino , Humanos , Ilusões , Masculino , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA