Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
J Am Chem Soc ; 146(29): 19839-19851, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38995168

RESUMO

We report on the use of a simple, bench-stable [Fe(salen)2]-µ-oxo precatalyst in the reduction of nitro compounds. The reaction proceeds at room temperature across a range of substrates, including nitro aromatics and aliphatics. By changing the reducing agent from pinacol borane (HBpin) to phenyl silane (H3SiPh), we can chemoselectively reduce nitro compounds while retaining carbonyl functionality. Our mechanistic studies, which include kinetics, electron paramagnetic resonance (EPR), mass spectrometry, and quantum chemistry, indicate the presence of a nitroso intermediate and the generation of an on-cycle iron hydride as a key catalytic intermediate. Based on this mechanistic insight, we were able to extend the chemistry to hydroamination and identified a simple substrate feature (alkene lowest unoccupied molecular orbital (LUMO) energy) that could be used to predict which alkenes would result in productive catalysis.

2.
J Am Chem Soc ; 146(18): 12496-12510, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38630640

RESUMO

Nuclear forward scattering (NFS) is a synchrotron-based technique relying on the recoil-free nuclear resonance effect similar to Mössbauer spectroscopy. In this work, we introduce NFS for in situ and operando measurements during electrocatalytic reactions. The technique enables faster data acquisition and better discrimination of certain iron sites in comparison to Mössbauer spectroscopy. It is directly accessible at various synchrotrons to a broad community of researchers and is applicable to multiple metal isotopes. We demonstrate the power of this technique with the hydrogen evolution mechanism of an immobilized iron porphyrin supported on carbon. Such catalysts are often considered as model systems for iron-nitrogen-carbon (FeNC) catalysts. Using in situ and operando NFS in combination with theoretical predictions of spectroscopic data enables the identification of the intermediate that is formed prior to the rate-determining step. The conclusions on the reaction mechanism can be used for future optimization of immobilized molecular catalysts and metal-nitrogen-carbon (MNC) catalysts.

3.
Angew Chem Int Ed Engl ; 63(31): e202404727, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-38949626

RESUMO

A long-standing question in electron transfer research concerns the number and identity of collective nuclear motions that drive electron transfer or localisation. It is well established that these nuclear motions are commonly gathered into a so-called electron transfer coordinate. In this theoretical study, we demonstrate that both anti-symmetric and symmetric vibrational motions are intrinsic to bridged systems, and that both are required to explain the characteristic shape of their intervalence charge transfer bands. Using the properties of a two-state Marcus-Hush model, we identify and quantify these two coordinates as linear combinations of normal modes from ab initio calculations. This quantification gives access to the potential coupling, reorganization energy and curvature of the potential energy surfaces involved in electron transfer, independent of any prior assumptions about the system of interest. We showcase these claims with the Creutz-Taube ion, a prototypical Class III mixed valence complex. We find that the symmetric dimension is responsible for the asymmetric band shape, and trace this back to the offset of the ground and excited state potentials in this dimension. The significance of the symmetric dimension originates from geometry dependent coupling, which in turn is a natural consequence of the well-established superexchange mechanism. The conceptual connection between the symmetric and anti-symmetric motions and the superexchange mechanism appears as a general result for bridged systems.

4.
J Am Chem Soc ; 145(47): 25579-25594, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37970825

RESUMO

Photosystem II, the water splitting enzyme of photosynthesis, utilizes the energy of sunlight to drive the four-electron oxidation of water to dioxygen at the oxygen-evolving complex (OEC). The OEC harbors a Mn4CaO5 cluster that cycles through five oxidation states Si (i = 0-4). The S3 state is the last metastable state before the O2 evolution. Its electronic structure and nature of the S2 → S3 transition are key topics of persisting controversy. Most spectroscopic studies suggest that the S3 state consists of four Mn(IV) ions, compared to the Mn(III)Mn(IV)3 of the S2 state. However, recent crystallographic data have received conflicting interpretations, suggesting either metal- or ligand-based oxidation, the latter leading to an oxyl radical or a peroxo moiety in the S3 state. Herein, we utilize high-energy resolution fluorescence detected (HERFD) X-ray absorption spectroscopy to obtain a highly resolved description of the Mn K pre-edge region for all S-states, paying special attention to use chemically unperturbed S3 state samples. In combination with quantum chemical calculations, we achieve assignment of specific spectroscopic features to geometric and electronic structures for all S-states. These data are used to confidently discriminate between the various suggestions concerning the electronic structure and the nature of oxidation events in all observable catalytic intermediates of the OEC. Our results do not support the presence of either peroxo or oxyl in the active configuration of the S3 state. This establishes Mn-centered storage of oxidative equivalents in all observable catalytic transitions and constrains the onset of the O-O bond formation until after the final light-driven oxidation event.

5.
Chemistry ; 29(10): e202202465, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36301727

RESUMO

For a future hydrogen economy, non-precious metal catalysts for the water splitting reactions are needed that can be implemented on a global scale. Metal-nitrogen-carbon (MNC) catalysts with active sites constituting a metal center with fourfold coordination of nitrogen (MN4 ) show promising performance, but an optimization rooted in structure-property relationships has been hampered by their low structural definition. Porphyrin model complexes are studied to transfer insights from well-defined molecules to MNC systems. This work combines experiment and theory to evaluate the influence of porphyrin substituents on the electronic and electrocatalytic properties of MN4 centers with respect to the hydrogen evolution reaction (HER) in aqueous electrolyte. We found that the choice of substituent affects their utilization on the carbon support and their electrocatalytic performance. We propose an HER mechanism for supported iron porphyrin complexes involving a [FeII (P⋅)]- radical anion intermediate, in which a porphinic nitrogen atom acts as an internal base. While this work focuses on the HER, the limited influence of a simultaneous interaction with the support and an aqueous electrolyte will likely be transferrable to other catalytic applications.

6.
J Phys Chem A ; 127(47): 9911-9920, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37883652

RESUMO

A recent study of photoinduced mixed-valency in the one-electron reduced form (µ-pz)[RuII(NH3)5]24+ of the Creutz-Taube ion used transient absorption spectroscopy with vis-NIR broadband detection to uncover a mixed-valent excited state with a typical intervalence charge transfer band and a nanosecond lifetime [Pieslinger et al. Angew. Chem., Int. Ed. 2022, 61, e202211747]. Herein, we use excited state dynamics simulations with implicit solvation to elucidate the electronic and vibrational evolution in the first 10 ps after the optical excitation. A manifold of excited states with weak interaction between the metal centers is populated already at time zero due to the breakdown of the Condon approximation and dominates the population of electronic states at short time scales (<0.5 ps). A long-lived vibrational wave packet mostly confined to oscillations of the metal center-bridge distances is observed. The oscillations are traced to the electronic structure properties of states with weak metal-metal coupling. The long-lived mixed-valent excited state of the Creutz-Taube ion analogue is formed vibrationally cold and has a more compact geometry. While experimentally, intersystem crossing and vibrational relaxation were deduced to be completed within 1 ps, our analysis indicates that both processes might persist at longer times.

7.
Angew Chem Int Ed Engl ; 62(25): e202303151, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37058317

RESUMO

Heteroleptic molybdenum complexes bearing 1,5-diaza-3,7-diphosphacyclooctane (P2 N2 ) and non-innocent dithiolene ligands were synthesized and electrochemically characterized. The reduction potentials of the complexes were found to be fine-tuned by a synergistic effect identified by DFT calculations as ligand-ligand cooperativity via non-covalent interactions. This finding is supported by electrochemical studies combined with UV/Vis spectroscopy and temperature-dependent NMR spectroscopy. The observed behavior is reminiscent of enzymatic redox modulation using second ligand sphere effects.


Assuntos
Molibdênio , Molibdênio/química , Ligantes , Oxirredução , Espectroscopia de Ressonância Magnética , Temperatura
8.
J Am Chem Soc ; 144(37): 16827-16840, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36036727

RESUMO

For large-scale utilization of fuel cells in a future hydrogen-based energy economy, affordable and environmentally benign catalysts are needed. Pyrolytically obtained metal- and nitrogen-doped carbon (MNC) catalysts are key contenders for this task. Their systematic improvement requires detailed knowledge of the active site composition and degradation mechanisms. In FeNC catalysts, the active site is an iron ion coordinated by nitrogen atoms embedded in an extended graphene sheet. Herein, we build an active site model from in situ and operando 57Fe Mössbauer spectroscopy and quantum chemistry. A Mössbauer signal newly emerging under operando conditions, D4, is correlated with the loss of other Mössbauer signatures (D2, D3a, D3b), implying a direct structural correspondence. Pyrrolic N-coordination, i.e., FeN4C12, is found as a spectroscopically and thermodynamically consistent model for the entire catalytic cycle, in contrast to pyridinic nitrogen coordination. These findings thus overcome the previously conflicting structural assignments for the active site and, moreover, identify and structurally assign a previously unknown intermediate in the oxygen reduction reaction at FeNC catalysts.

9.
Chemistry ; 28(9): e202103775, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-34981589

RESUMO

The properties and reactivities of transition metal complexes are often discussed in terms of Ligand Field Theory (LFT), and with ab initio LFT a direct connection to quantum chemical wavefunctions was recently established. The Angular Overlap Model (AOM) is a widely used, ligand-specific parameterization scheme of the ligand field splitting that has, however, been restricted by the availability and resolution of experimental data. Using ab initio LFT, we present here a generalised, symmetry-independent and automated fitting procedure for AOM parameters that is even applicable to formally underdetermined or experimentally inaccessible systems. This method allows quantitative evaluations of assumptions commonly made in AOM applications, for example, transferability or the relative magnitudes of AOM parameters, and the response of the ligand field to structural or electronic changes. A two-dimensional spectrochemical series of tetrahedral halido metalates ([MII X4 ]2- , M=Mn-Cu) served as a case study. A previously unknown linear relationship between the halide ligands' chemical hardness and their AOM parameters was found. The impartial and automated procedure for identifying AOM parameters introduced here can be used to systematically improve our understanding of ligand-metal interactions in coordination complexes.

10.
Inorg Chem ; 61(3): 1308-1315, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35005902

RESUMO

We report a new series of homoleptic Ni(I) bis-N-heterocyclic carbene complexes with a range of torsion angles between the two ligands from 68° to 90°. Electron paramagnetic resonance measurements revealed a strongly anisotropic g-tensor in all complexes with a small variation in g∥ ∼ 5.7-5.9 and g⊥ ∼ 0.6. The energy of the first excited state identified by variable-field far-infrared magnetic spectroscopy and SOC-CASSCF/NEVPT2 calculations is in the range 270-650 cm-1. Magnetic relaxation measured by alternating current susceptibility up to 10 K is dominated by Raman and direct processes. Ab initio ligand-field analysis reveals that a torsion angle of <90° causes the splitting between doubly occupied dxz and dyz orbitals, which has little effect on the magnetic properties, while the temperature dependence of the magnetic relaxation appears to have no correlation with the torsion angle.

11.
Angew Chem Int Ed Engl ; 61(37): e202208663, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-35851715

RESUMO

The application of an alkyne cyclotrimerization regime with an [Fe(salen)]2 -µ-oxo (1) catalyst to triphenylmethylphosphaalkyne (2) yields gram-scale quantities of 2,4,6-tris(triphenylmethyl)-Dewar-1,3,5-triphosphabenzene (3). Bulky lithium salt LiHMDS facilitates a rearrangement of 3 to the 1,3,5-triphosphabenzene valence isomer (3'), which subsequently undergoes an intriguing phosphorus migration reaction to form the ring-contracted species (3''). Density functional theory calculations provide a plausible mechanism for this rearrangement. Given the stability of 3, a diverse array of unprecedented transformations was investigated. We report novel crystallographically characterized products of successful nucleophilic/electrophilic addition and protonation/oxidation reactions.

12.
Angew Chem Int Ed Engl ; 61(35): e202205922, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-35714100

RESUMO

Nitride complexes are key species in homogeneous nitrogen fixation to NH3 via stepwise proton-coupled electron transfer (PCET). In contrast, direct generation of nitrogenous organic products from N2 -derived nitrides requires new strategies to enable efficient reductive nitride transfer in the presence of organic electrophiles. We here present a 2-step protocol for the conversion of dinitrogen to benzonitrile. Photoelectrochemical, reductive N2 splitting produces a rhenium(V) nitride with unfavorable PCET thermochemistry towards ammonia generation. However, N-benzoylation stabilizes subsequent reduction as a basis for selective nitrogen transfer in the presence of the organic electrophile and Brønsted acid at mild reduction potentials. This work offers a new strategy for photoelectrosynthetic nitrogen fixation beyond ammonia-to yield nitrogenous organic products.


Assuntos
Amônia , Prótons , Amônia/química , Elétrons , Nitrilas , Nitrogênio/química , Oxirredução
13.
J Am Chem Soc ; 143(27): 10361-10366, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34191490

RESUMO

Superoxo complexes of copper are primary adducts in several O2-activating Cu-containing metalloenzymes as well as in other Cu-mediated oxidation and oxygenation reactions. Because of their intrinsically high reactivity, however, isolation of Cux(O2•-) species is challenging. Recent work (J. Am. Chem. Soc. 2017, 139, 9831; 2019, 141, 12682) established fundamental thermochemical data for the H atom abstraction reactivity of dicopper(II) superoxo complexes, but structural characterization of these important intermediates was so far lacking. Here we report the first crystallographic structure determination of a superoxo dicopper(II) species (3) together with the structure of its 1e- reduced peroxo congener (2; a rare cis-µ-1,2-peroxo dicopper(II) complex). Interconversion of 2 and 3 occurs at low potential (-0.58 V vs Fc/Fc+) and is reversible both chemically and electrochemically. Comparison of metric parameters (d(O-O) = 1.441(2) Å for 2 vs 1.329(7) Å for 3) and of spectroscopic signatures (ν̃(16O-16O) = 793 cm-1 for 2 vs 1073 cm-1 for 3) reflects that the redox process occurs at the bridging O2-derived unit. The CuII-O2•--CuII complex has an S = 1/2 spin ground state according to magnetic and EPR data, in agreement with density functional theory calculations. Computations further show that the potential associated with changes of the Cu-O-O-Cu dihedral angle is shallow for both 2 and 3. These findings provide a structural basis for the low reorganization energy of the kinetically facile 1e- interconversion of µ-1,2-superoxo/peroxo dicopper(II) couples, and they open the door for comprehensive studies of these key intermediates in Cux/O2 chemistry.

14.
Angew Chem Int Ed Engl ; 58(3): 830-834, 2019 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-30452107

RESUMO

Thermal nitrogen fixation relies on strong reductants to overcome the extraordinarily large N-N bond energy. Photochemical strategies that drive N2 fixation are scarcely developed. Here, the synthesis of a dinuclear N2 -bridged complex is presented upon reduction of a rhenium(III) pincer platform. Photochemical splitting into terminal nitride complexes is triggered by visible light. Clean nitrogen transfer with benzoyl chloride to free benzamide and benzonitrile is enabled by cooperative 2 H+ /2 e- transfer of the pincer ligand. A three-step cycle is demonstrated for N2 to nitrile fixation that relies on electrochemical reduction, photochemical N2 -splitting and thermal nitrogen transfer.

15.
Chemistry ; 24(20): 5112-5123, 2018 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-29149535

RESUMO

The search for molecular catalysts that efficiently activate or cleave the dinitrogen molecule is an active field of research. While many thermal dinitrogen cleavage catalysts are known, the photochemical activation of N2 has received considerably less attention. In this paper, the first computational study of the osmium dimer [Os(II,III)2 (µ-N2 )(NH3 )10 ]5+ , which was shown to be capable of dinitrogen photocleavage, is presented. Despite its deceptively simple geometry, it has a complex electronic structure with a valence-delocalized and electronically degenerate ground state. Using multiconfigurational methods, the electronic structure at the ground state geometry and along the dinitrogen cleavage coordinate was investigated. The results indicate that an unoccupied molecular orbital with σ-bonding character between osmium and µ-N atoms and σ-antibonding dinitrogen character is most affected by N-N distance elongation. This implies that a lower barrier for thermal or photochemical N2 activation in linear M-N-N-M complexes can be achieved by lowering the energetic separation between this unoccupied orbital and the HOMO, representing a specific target for future catalyst design.

16.
J Am Chem Soc ; 139(41): 14412-14424, 2017 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-28921983

RESUMO

Nature's water-splitting catalyst, an oxygen-bridged tetramanganese calcium (Mn4O5Ca) complex, sequentially activates two substrate water molecules generating molecular O2. Its reaction cycle is composed of five intermediate (Si) states, where the index i indicates the number of oxidizing equivalents stored by the cofactor. After formation of the S4 state, the product dioxygen is released and the cofactor returns to its lowest oxidation state, S0. Membrane-inlet mass spectrometry measurements suggest that at least one substrate is bound throughout the catalytic cycle, as the rate of 18O-labeled water incorporation into the product O2 is slow, on a millisecond to second time scale depending on the S state. Here, we demonstrate that the Mn4O5Ca complex poised in the S0 state contains an exchangeable hydroxo bridge. On the basis of a combination of magnetic multiresonance (EPR) spectroscopies, comparison to biochemical models and theoretical calculations we assign this bridge to O5, the same bridge identified in the S2 state as an exchangeable fully deprotonated oxo bridge [Pérez Navarro, M.; et al. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 15561]. This oxygen species is the most probable candidate for the slowly exchanging substrate water in the S0 state. Additional measurements provide new information on the Mn ions that constitute the catalyst. A structural model for the S0 state is proposed that is consistent with available experimental data and explains the observed evolution of water exchange kinetics in the first three states of the catalytic cycle.

17.
Top Curr Chem ; 371: 23-48, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26099285

RESUMO

Nature relies on a unique and intricate biochemical setup to achieve sunlight-driven water splitting. Combined experimental and computational efforts have produced significant insights into the structural and functional principles governing the operation of the water-oxidizing enzyme Photosystem II in general, and of the oxygen-evolving manganese-calcium cluster at its active site in particular. Here we review the most important aspects of biological water oxidation, emphasizing current knowledge on the organization of the enzyme, the geometric and electronic structure of the catalyst, and the role of calcium and chloride cofactors. The combination of recent experimental work on the identification of possible substrate sites with computational modeling have considerably limited the possible mechanistic pathways for the critical O-O bond formation step. Taken together, the key features and principles of natural photosynthesis may serve as inspiration for the design, development, and implementation of artificial systems.


Assuntos
Fotossíntese , Oxirredução , Oxigênio/química , Água/química
18.
Inorg Chem ; 55(2): 488-501, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26700960

RESUMO

In transition-metal complexes, the geometric structure is intimately connected with the spin state arising from magnetic coupling between the paramagnetic ions. The tetramanganese-calcium cofactor that catalyzes biological water oxidation in photosystem II cycles through five catalytic intermediates, each of which adopts a specific geometric and electronic structure and is thus characterized by a specific spin state. Here, we review spin-structure correlations in Nature's water-splitting catalyst. The catalytic cycle of the Mn4O5Ca cofactor can be described in terms of spin-dependent reactivity. The lower "inactive" S states of the catalyst, S0 and S1, are characterized by low-spin ground states, SGS = 1/2 and SGS = 0. This is connected to the "open cubane" topology of the inorganic core in these states. The S2 state exhibits structural and spin heterogeneity in the form of two interconvertible isomers and is identified as the spin-switching point of the catalytic cycle. The first S2 state form is an open cubane structure with a low-spin SGS = 1/2 ground state, whereas the other represents the first appearance of a closed cubane topology in the catalytic cycle that is associated with a higher-spin ground state of SGS = 5/2. It is only this higher-spin form of the S2 state that progresses to the "activated" S3 state of the catalyst. The structure of this final metastable catalytic state was resolved in a recent report, showing that all manganese ions are six-coordinate. The magnetic coupling is dominantly ferromagnetic, leading to a high-spin ground state of SGS = 3. The ability of the Mn4O5Ca cofactor to adopt two distinct structural and spin-state forms in the S2 state is critical for water binding in the S3 state, allowing spin-state crossing from the inactive, low-spin configuration of the catalyst to the activated, high-spin configuration. Here we describe how an understanding of the magnetic properties of the catalyst in all S states has allowed conclusions on the catalyst function to be reached. A summary of recent literature results is provided that constrains the sequence of molecular level events: catalyst/substrate deprotonation, manganese oxidation, and water molecule insertion.


Assuntos
Evolução Química , Marcadores de Spin , Catálise , Espectroscopia de Ressonância de Spin Eletrônica , Manganês/química , Estrutura Molecular
19.
Phys Chem Chem Phys ; 18(16): 10739-50, 2016 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-26762578

RESUMO

The redox potential of synthetic oligonuclear transition metal complexes has been shown to correlate with the Lewis acidity of a redox-inactive cation connected to the redox-active transition metals of the cluster via oxo or hydroxo bridges. Such heterometallic clusters are important cofactors in many metalloenzymes, where it is speculated that the redox-inactive constituent ion of the cluster serves to optimize its redox potential for electron transfer or catalysis. A principal example is the oxygen-evolving complex in photosystem II of natural photosynthesis, a Mn4CaO5 cofactor that oxidizes water into dioxygen, protons and electrons. Calcium is critical for catalytic function, but its precise role is not yet established. In analogy to synthetic complexes it has been suggested that Ca(2+) fine-tunes the redox potential of the manganese cluster. Here we evaluate this hypothesis by computing the relative redox potentials of substituted derivatives of the oxygen-evolving complex with the cations Sr(2+), Gd(3+), Cd(2+), Zn(2+), Mg(2+), Sc(3+), Na(+) and Y(3+) for two sequential transitions of its catalytic cycle. The theoretical approach is validated with a series of experimentally well-characterized Mn3AO4 cubane complexes that are structural mimics of the enzymatic cluster. Our results reproduce perfectly the experimentally observed correlation between the redox potential and the Lewis acidities of redox-inactive cations for the synthetic complexes. However, it is conclusively demonstrated that this correlation does not hold for the oxygen evolving complex. In the enzyme the redox potential of the cluster only responds to the charge of the redox-inactive cations and remains otherwise insensitive to their precise identity, precluding redox-tuning of the metal cluster as a primary role for Ca(2+) in biological water oxidation.


Assuntos
Água/química , Catálise , Cátions , Oxirredução
20.
J Am Chem Soc ; 137(40): 12815-34, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26352328

RESUMO

First principle calculations of extended X-ray absorption fine structure (EXAFS) data have seen widespread use in bioinorganic chemistry, perhaps most notably for modeling the Mn4Ca site in the oxygen evolving complex (OEC) of photosystem II (PSII). The logic implied by the calculations rests on the assumption that it is possible to a priori predict an accurate EXAFS spectrum provided that the underlying geometric structure is correct. The present study investigates the extent to which this is possible using state of the art EXAFS theory. The FEFF program is used to evaluate the ability of a multiple scattering-based approach to directly calculate the EXAFS spectrum of crystallographically defined model complexes. The results of these parameter free predictions are compared with the more traditional approach of fitting FEFF calculated spectra to experimental data. A series of seven crystallographically characterized Mn monomers and dimers is used as a test set. The largest deviations between the FEFF calculated EXAFS spectra and the experimental EXAFS spectra arise from the amplitudes. The amplitude errors result from a combination of errors in calculated S0(2) and Debye-Waller values as well as uncertainties in background subtraction. Additional errors may be attributed to structural parameters, particularly in cases where reliable high-resolution crystal structures are not available. Based on these investigations, the strengths and weaknesses of using first-principle EXAFS calculations as a predictive tool are discussed. We demonstrate that a range of DFT optimized structures of the OEC may all be considered consistent with experimental EXAFS data and that caution must be exercised when using EXAFS data to obtain topological arrangements of complex clusters.


Assuntos
Modelos Químicos , Oxigênio/química , Complexo de Proteína do Fotossistema II/química , Análise Espectral/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA