Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(46): e202310439, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37773008

RESUMO

A bidentate pnictogen bonding host-system based on 1,8-diethynylanthracene was synthesized by a selective tin-antimony exchange reaction and investigated regarding its ability to act as a Lewis acidic host component for the complexation of Lewis basic or anionic guests. In this work, the novel C≡C-Sb(C2 F5 )2 unit was established to study the potential of antimony(III) sites as representatives for the scarcely explored pnictogen bonding donors. The capability of this partly fluorinated host system was investigated towards halide anions (Cl- , Br- , I- ), dimethyl chalcogenides Me2 Y (Y=O, S, Se, Te), and nitrogen heterocycles (pyridine, pyrimidine). Insights into the adduct formation behavior as well as the bonding situation of such E⋅⋅⋅Sb-CF moieties were obtained in solution by means of NMR spectroscopy, in the solid state by X-ray diffraction, by elemental analyses, and by computational methods (DFT, QTAIM, IQA), respectively.

2.
Dalton Trans ; 53(28): 11762-11768, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38938114

RESUMO

The reactions of the frustrated Lewis pair (F5C2)2SbCH2P(tBu)2 with oxygen, sulphur, selenium and tellurium led to the mono-oxidation products (F5C2)2SbCH2P(E)(tBu)2 (E = O, S, Se, Te). Further oxidation of these chalcogen adducts with tetrachloro-ortho-benzoquinone (o-chloranil) gave (F5C2)2Sb(CH2)(µ-E)P(tBu)2·CatCl (CatCl = o-O2C6Cl4) with a central four-membered ring heterocycle for E = O, S, and Se. For E = Te the elimination of elemental tellurium led to an oxidation product with two equivalents of o-chloranil, (F5C2)2SbCH2P(tBu)2·2CatCl, which is also accessible by reaction of (F5C2)2SbCH2P(tBu)2 with o-chloranil. The synthesised compounds were characterised by NMR spectroscopy and X-ray structure analyses, and the structural properties were analysed in the light of the altered Lewis acidity due to the oxidation of the antimony atoms.

3.
Chem Sci ; 15(30): 12118-12125, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39092119

RESUMO

The geminal Lewis pair (F5C2)2SbCH2P(tBu)2 (1) was prepared by reacting (F5C2)2SbCl with LiCH2P(tBu)2. Despite its extremely electronegative pentafluoroethyl substituents, the neutral 1 exhibits a relatively soft acidic antimony function according to the HSAB concept (hard-soft acid-base). These properties lead to a reversibility in the binding of CS2 to 1, as observed by VT-NMR spectroscopy, while no reaction with CO2 is observed. The reaction behaviour towards heterocumulenes and the specific interaction situation in the CS2 adduct were analysed by quantum chemical calculations. The FLP-type reactivity of 1 has also been demonstrated by reaction with a variety of small molecules (SO2, PhNCO, PhNCS, (MePh2P)AuCl). The reactions of 1 with PhNCO and PhNCS led to different types of cyclic addition products: PhNCO adds with its N[double bond, length as m-dash]C bond and PhNCS adds preferentially with its C[double bond, length as m-dash]S bond. The reaction of 1 with (MePh2P)AuCl gave an adduct {[(F5C2)2SbCH2(tBu)2P]2Au}+ with a clamp-like structure binding a chloride anion by its two antimony atoms in chelate mode. Compound 1 and its adducts have been characterised by X-ray diffraction experiments, multinuclear NMR spectroscopy, elemental analyses and computational calculations (DFT, QTAIM, IQA).

4.
Chem Sci ; 14(46): 13551-13559, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38033898

RESUMO

A highly halide affine, tetradentate pnictogen-bonding host-system based on the syn-photodimer of 1,8-diethynylanthracene was synthesized by a selective tin-antimony exchange reaction. The host carries four C[triple bond, length as m-dash]C-Sb(C2F5)2 units and has been investigated regarding its ability to act as a Lewis acidic host component for the cooperative trapping of halide ions (F-, Cl-, Br-, I-). The chelating effect makes this host-system superior to its bidentate derivative in competition experiments. It represents a charge-reversed crown-4 and has the ability to dissolve otherwise poorly soluble salts like tetra-methyl-ammonium chloride. Its NMR-spectroscopic properties make it a potential probe for halide ions in solution. Insights into the structural properties of the halide adducts by X-ray diffraction and computational methods (DFT, QTAIM, IQA) reveal a complex interplay of attractive pnictogen bonding interactions and Coulomb repulsion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA