Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Biol Chem ; 290(10): 6243-55, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25593311

RESUMO

The enzyme ScHxk2 of Saccharomyces cerevisiae is a dual-function hexokinase that besides its catalytic role in glycolysis is involved in the transcriptional regulation of glucose-repressible genes. Relief from glucose repression is accompanied by the phosphorylation of the nuclear fraction of ScHxk2 at serine 15 and the translocation of the phosphoenzyme into the cytosol. Different studies suggest different serine/threonine protein kinases, Ymr291w/Tda1 or Snf1, to accomplish ScHxk2-S15 phosphorylation. The current paper provides evidence that Ymr291w/Tda1 is essential for that modification, whereas protein kinases Ydr477w/Snf1, Ynl307c/Mck1, Yfr014c/Cmk1, and Ykl126w/Ypk1, which are co-purified during Ymr291w/Tda1 tandem affinity purification, as well as protein kinase PKA and PKB homolog Sch9 are dispensable. Taking into account the detection of a significantly higher amount of the Ymr291w/Tda1 protein in cells grown in low-glucose media as compared with a high-glucose environment, Ymr291w/Tda1 is likely to contribute to glucose signaling in S. cerevisiae on the level of ScHxk2-S15 phosphorylation in a situation of limited external glucose availability. The evolutionary conservation of amino acid residue serine 15 in yeast hexokinases and its phosphorylation is illustrated by the finding that YMR291W/TDA1 of S. cerevisiae and the homologous KLLA0A09713 gene of Kluyveromyces lactis allow for cross-complementation of the respective protein kinase single-gene deletion strains.


Assuntos
Glucose/metabolismo , Glicólise , Hexoquinase/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas de Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Regulação Fúngica da Expressão Gênica , Hexoquinase/biossíntese , Hexoquinase/metabolismo , Isoenzimas/genética , Kluyveromyces , Fosforilação , Proteínas Serina-Treonina Quinases/biossíntese , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/biossíntese , Proteínas de Saccharomyces cerevisiae/metabolismo , Serina/genética , Transdução de Sinais/genética , Especificidade por Substrato
2.
Mol Cell Proteomics ; 13(3): 860-75, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24434903

RESUMO

The analysis of glucose signaling in the Crabtree-positive eukaryotic model organism Saccharomyces cerevisiae has disclosed a dual role of its hexokinase ScHxk2, which acts as a glycolytic enzyme and key signal transducer adapting central metabolism to glucose availability. In order to identify evolutionarily conserved characteristics of hexokinase structure and function, the cellular response of the Crabtree-negative yeast Kluyveromyces lactis to rag5 null mutation and concomitant deficiency of its unique hexokinase KlHxk1 was analyzed by means of difference gel electrophoresis. In total, 2,851 fluorescent spots containing different protein species were detected in the master gel representing all of the K. lactis proteins that were solubilized from glucose-grown KlHxk1 wild-type and mutant cells. Mass spectrometric peptide analysis identified 45 individual hexokinase-dependent proteins related to carbohydrate, short-chain fatty acid and tricarboxylic acid metabolism as well as to amino acid and protein turnover, but also to general stress response and chromatin remodeling, which occurred as a consequence of KlHxk1 deficiency at a minimum 3-fold enhanced or reduced level in the mutant proteome. In addition, three proteins exhibiting homology to 2-methylcitrate cycle enzymes of S. cerevisiae were detected at increased concentrations, suggesting a stimulation of pyruvate formation from amino acids and/or fatty acids. Experimental validation of the difference gel electrophoresis approach by post-lysis dimethyl labeling largely confirmed the abundance changes detected in the mutant proteome via the former method. Taking into consideration the high proportion of identified hexokinase-dependent proteins exhibiting increased proteomic levels, KlHxk1 is likely to have a repressive function in a multitude of metabolic pathways. The proteomic alterations detected in the mutant classify KlHxk1 as a multifunctional enzyme and support the view of evolutionary conservation of dual-role hexokinases even in organisms that are less specialized than S. cerevisiae in terms of glucose utilization.


Assuntos
Proteínas Fúngicas/metabolismo , Glucose/farmacologia , Hexoquinase/deficiência , Kluyveromyces/efeitos dos fármacos , Kluyveromyces/enzimologia , Proteoma/metabolismo , Proteômica , Carbono/farmacologia , Eletroforese em Gel Bidimensional , Ontologia Genética , Hexoquinase/metabolismo , Kluyveromyces/crescimento & desenvolvimento , Redes e Vias Metabólicas/efeitos dos fármacos , Mutação/genética , Fosforilação/efeitos dos fármacos , Fosfosserina/metabolismo
3.
Biochem Biophys Res Commun ; 435(2): 313-8, 2013 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-23583397

RESUMO

The bifunctional hexokinase KlHxk1 is a key component of glucose-dependent signal transduction in Kluyveromyces lactis. KlHxk1 is phosphorylated in vivo and undergoes ATP-dependent autophosphorylation-inactivation in vitro. This study identifies serine-15 as the site of in vivo phosphorylation and serine-157 as the autophosphorylation-inactivation site. X-ray crystallography of the in vivo phosphorylated enzyme indicates the existence of a ring-shaped symmetrical homodimer carrying two phosphoserine-15 residues. In contrast, small-angle X-ray scattering and equilibrium sedimentation analyses reveal the existence of monomeric phosphoserine-15 KlHxk1 in solution. While phosphorylation at serine-15 and concomitant homodimer dissociation are likely to be involved in glucose signalling, mechanism and putative physiological significance of KlHxk1 inactivation by autophosphorylation at serine-157 remain to be established.


Assuntos
Glucose/química , Glucose/metabolismo , Hexoquinase/química , Hexoquinase/metabolismo , Kluyveromyces/enzimologia , Ativação Enzimática , Estabilidade Enzimática , Hexoquinase/ultraestrutura , Kluyveromyces/classificação , Fosforilação , Especificidade da Espécie
4.
Mol Cell Proteomics ; 10(8): M110.007187, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21525168

RESUMO

Metabolic disorders like diabetes mellitus and obesity may compromise the fertility of men and women. To unveil disease-associated proteomic changes potentially affecting male fertility, the proteomes of sperm cells from type-1 diabetic, type-2 diabetic, non-diabetic obese and clinically healthy individuals were comparatively analyzed by difference gel electrophoresis. The adaptation of a general protein extraction procedure to the solubilization of proteins from sperm cells allowed for the resolution of 3187 fluorescent spots in the difference gel electrophoresis image of the master gel, which contained the entirety of solubilized sperm proteins. Comparison of the pathological and reference proteomes by applying an average abundance ratio setting of 1.6 and a p ≤ 0.05 criterion resulted in the identification of 79 fluorescent spots containing proteins that were present at significantly changed levels in the sperm cells. Biometric evaluation of the fluorescence data followed by mass spectrometric protein identification revealed altered levels of 12, 71, and 13 protein species in the proteomes of the type-1 diabetic, type-2 diabetic, and non-diabetic obese patients, respectively, with considerably enhanced amounts of the same set of one molecular form of semenogelin-1, one form of clusterin, and two forms of lactotransferrin in each group of pathologic samples. Remarkably, ß-galactosidase-1-like protein was the only protein that was detected at decreased levels in all three pathologic situations. The former three proteins are part of the eppin (epididymal proteinase inhibitor) protein complex, which is thought to fulfill fertilization-related functions, such as ejaculate sperm protection, motility regulation and gain of competence for acrosome reaction, whereas the putative role of the latter protein to function as a glycosyl hydrolase during sperm maturation remains to be explored at the protein/enzyme level. The strikingly similar differences detected in the three groups of pathological sperm proteomes reflect a disease-associated enhanced formation of predominantly proteolytically modified forms of three eppin protein complex components, possibly as a response to enduring hyperglycemia and enhanced oxidative stress.


Assuntos
Diabetes Mellitus Tipo 1/patologia , Diabetes Mellitus Tipo 2/patologia , Infertilidade Masculina/patologia , Obesidade/patologia , Proteínas Secretadas Inibidoras de Proteinases/metabolismo , Espermatozoides/metabolismo , Adulto , Idoso , Biomarcadores/metabolismo , Estudos de Casos e Controles , Forma Celular , Clusterina/metabolismo , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Infertilidade Masculina/etiologia , Infertilidade Masculina/metabolismo , Lactoferrina/metabolismo , Masculino , Pessoa de Meia-Idade , Complexos Multiproteicos/metabolismo , Obesidade/complicações , Obesidade/metabolismo , Isoformas de Proteínas/metabolismo , Proteoma/metabolismo , Padrões de Referência , Proteínas Secretadas pela Vesícula Seminal/metabolismo , Contagem de Espermatozoides , Motilidade dos Espermatozoides , Eletroforese em Gel Diferencial Bidimensional/normas , Adulto Jovem
6.
J Biol Chem ; 285(52): 41019-33, 2010 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-20943665

RESUMO

Crystal structures of the unique hexokinase KlHxk1 of the yeast Kluyveromyces lactis were determined using eight independent crystal forms. In five crystal forms, a symmetrical ring-shaped homodimer was observed, corresponding to the physiological dimer existing in solution as shown by small-angle x-ray scattering. The dimer has a head-to-tail arrangement such that the small domain of one subunit interacts with the large domain of the other subunit. Dimer formation requires favorable interactions of the 15 N-terminal amino acids that are part of the large domain with amino acids of the small domain of the opposite subunit, respectively. The head-to-tail arrangement involving both domains of the two KlHxk1 subunits is appropriate to explain the reduced activity of the homodimer as compared with the monomeric enzyme and the influence of substrates and products on dimer formation and dissociation. In particular, the structure of the symmetrical KlHxk1 dimer serves to explain why phosphorylation of conserved residue Ser-15 may cause electrostatic repulsions with nearby negatively charged residues of the adjacent subunit, thereby inducing a dissociation of the homologous dimeric hexokinases KlHxk1 and ScHxk2. Two complex structures of KlHxk1 with bound glucose provide a molecular model of substrate binding to the open conformation and the subsequent classical domain closure motion of yeast hexokinases. The entirety of the novel data extends the current concept of glucose signaling in yeast and complements the induced-fit model by integrating the events of N-terminal phosphorylation and dissociation of homodimeric yeast hexokinases.


Assuntos
Proteínas Fúngicas/química , Hexoquinase/química , Kluyveromyces/enzimologia , Modelos Moleculares , Multimerização Proteica/fisiologia , Cristalografia por Raios X , Proteínas Fúngicas/metabolismo , Glucose/química , Glucose/metabolismo , Hexoquinase/metabolismo , Fosforilação/fisiologia , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína
7.
Reprod Biomed Online ; 19(5): 660-70, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20021714

RESUMO

Difference gel electrophoresis (DIGE) of fluorescently labelled human sperm proteins was used to identify diabetes- and obesity-associated changes of the sperm proteome. Semen samples from type 1 diabetics, non-diabetic obese individuals and a reference group of clinically healthy fertile donors were evaluated in a comparative study. The adaptation of a general protein extraction procedure to the solubilization of proteins from isolated progressively motile human spermatozoa resulted in the detection of approximately 2700 fluorescent protein spots in the DIGE images. Comparison of the patients' sperm proteomes with those of the reference group allowed the identification of 20 spots containing proteins that were present in the sperm lysates at significantly increased or decreased concentrations. In detail, eight of these spots were apparently related to type 1 diabetes while 12 spots were apparently related to obesity. Tryptic digestion of the spot proteins and mass spectrometric analysis of the corresponding peptides identified seven sperm proteins apparently associated with type 1 diabetes and nine sperm proteins apparently associated with obesity, three of which existing in multiple molecular forms. The established proteomic approach is expected to function as a non-invasive experimental tool in the diagnosis of male infertility and in monitoring any fertility-restoring therapy.


Assuntos
Diabetes Mellitus Tipo 1/metabolismo , Obesidade/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Espermatozoides/metabolismo , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/genética , Eletroforese em Gel de Poliacrilamida , Humanos , Processamento de Imagem Assistida por Computador , Infertilidade Masculina/complicações , Infertilidade Masculina/metabolismo , Masculino , Espectrometria de Massas , Obesidade/complicações , Obesidade/genética , Sêmen/metabolismo
8.
Eng Life Sci ; 18(4): 218-226, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32624900

RESUMO

Peptides with angiotensin-converting enzyme (ACE)-inhibitory and antihypertensive effects are suggested as innovative food additives to prevent or treat hypertension. Currently, these substances are isolated from food proteins following nonselective hydrolysis as a mixture of ACE-inhibitory peptides and other protein fragments. This study presents an innovative biotechnological method, based on recombinant DNA technology that was established to specifically produce the ACE-inhibitory dipeptide isoleucine-tryptophan. In a first step, a repetitive isoleucine-tryptophan construct fused to the maltose-binding protein was generated and expressed in Escherichia coli BL21 cells. The chromatographically purified recombinant fusion protein was enzymatically hydrolyzed using α-chymotrypsin to liberate the dipeptide isoleucine-tryptophan. The identity of the liberated isoleucine-tryptophan was confirmed by MS and derivatization of its N-terminus. The ACE-inhibitory effect of the recombinant dipeptide on soluble and membrane bound ACE was found to be indistinguishable from the inhibitory potential of the chemically produced commercially available dipeptide. The established experimental strategy represents a promising approach to the biotechnical production of sufficient amounts of recombinant peptide-based ACE-inhibitory and antihypertensive substances that are applicable as functional food additives to delay or even prevent hypertension.

9.
Artigo em Inglês | MEDLINE | ID: mdl-17565189

RESUMO

Glucose acts as both a carbon source and a hormone-like regulator of gene expression in eukaryotic organisms from yeast to man. Phosphorylation of glucose is executed by hexokinases, which represent a class of multifunctional enzymes that, in addition to their contribution to the uptake and initiation of metabolism of glucose, fructose and mannose, are involved in glucose signalling. The genome of the budding yeast Kluyveromyces lactis encodes a single hexokinase (KlHxk1) and a single glucokinase (KlGlk1). KlHxk1 exists in a monomer-homodimer equilibrium which is presumed to play a role in metabolic regulation. In order to evaluate the physiological significance of KlHxk1 dimerization on a molecular level, the enzyme was crystallized and subjected to X-ray structure analysis. Crystallization employing ammonium sulfate, diammonium phosphate or polyethylene glycol 6000 at pH values of 8.0-9.5 gave seven different crystal forms of KlHxk1. Crystallographic data to 1.66 A resolution were obtained using synchrotron radiation. Structure determination of KlHxk1 in various packing environments will reveal the full architecture of the homodimeric enzyme and complete our mechanistic understanding of the catalytic and regulatory functions of the enzyme.


Assuntos
Hexoquinase/química , Cristalização , Cristalografia por Raios X , Conformação Proteica
10.
FEBS Lett ; 586(4): 455-8, 2012 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-22289182

RESUMO

Hxk2 is the predominant hexokinase of Saccharomyces cerevisiae during growth on glucose. In addition to its role in glycolysis, the enzyme is involved in glucose sensing and regulation of gene expression. Glucose limitation causes the phosphorylation of Hxk2 at serine-15 which affects the nucleo-cytoplasmic distribution and dimer stability of the enzyme. In order to identify the responsible kinase, we screened selected protein kinase single-gene deletion mutants by high resolution clear native PAGE. Deletion of YMR291W/TDA1 resulted in the absence of the Hxk2 phosphomonomer, indicating an indispensable role of the corresponding protein in Hxk2 phosphorylation.


Assuntos
Genes Fúngicos , Hexoquinase/química , Hexoquinase/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Dimerização , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Glucose/metabolismo , Glicólise , Hexoquinase/genética , Fosforilação , Estrutura Quaternária de Proteína , Proteínas de Saccharomyces cerevisiae/genética , Serina/química
11.
FEMS Yeast Res ; 8(6): 858-69, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18637841

RESUMO

The proteolytic potential of the pathogenic fungus Candida albicans was evaluated by the identification and functional characterization of a peptidolytic enzyme isolated from the cell wall of the microorganism. Determination of basic structural and kinetic data identified a neutral arginine/alanine/leucine-specific metallo-aminopeptidase of unknown function termed CaApe2, which is encoded by ORF CaO19.5197 (GenBank RefSeq XM_705313). Mass spectrometric tryptic peptide analysis and N-terminal protein sequencing revealed serine-88 to represent the N-terminus of CaApe2. Taking into account the results of DNA and protein sequence analysis including inspection of the genomic region upstream of ORF CaO19.5197, the gene CaAPE2 is likely to consist of two exons linked by a phase-2 intron with exons 1 and 2 encoding a signal peptide and the amino acids 88-954 of ORF CaO19.5197, respectively. The isolated CaApe2 protein shares an equally high similarity with the gene products ScAap1 and ScApe2, suggesting duplication of a phylogenetically ancient precursor gene in Saccharomyces cerevisiae. The observed failure to cleave human type-I and type-IV collagen in vitro challenges a direct role that secreted CaApe2 might play in the degradation of extracellular matrix components during host colonization, but does not exclude per se a contribution of the aminopeptidase to the pathogenicity of C. albicans.


Assuntos
Aminopeptidases , Candida albicans/enzimologia , Parede Celular/metabolismo , Alanina/química , Sequência de Aminoácidos , Aminopeptidases/química , Aminopeptidases/genética , Aminopeptidases/isolamento & purificação , Aminopeptidases/metabolismo , Arginina/química , Sequência de Bases , Candida albicans/genética , Candida albicans/crescimento & desenvolvimento , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/imunologia , Proteínas Fúngicas/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Leucil Aminopeptidase/química , Leucil Aminopeptidase/genética , Leucil Aminopeptidase/isolamento & purificação , Leucil Aminopeptidase/metabolismo , Dados de Sequência Molecular , Especificidade por Substrato , Temperatura
12.
FEMS Yeast Res ; 7(5): 683-92, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17573926

RESUMO

Recent data suggest that hexokinase KlHxk1 (Rag5) represents the only glucose-phosphorylating enzyme of Kluyveromyces lactis, which also is required for glucose signalling. Long-term growth studies of a K. lactis rag5 mutant, however, reveal slow growth on glucose, but no growth on fructose. Isolation of the permissive glucose-phosphorylating enzyme, mass spectrometric tryptic peptide analysis and determination of basic kinetic data identify a novel glucokinase (KlGlk1) encoded by ORF KLLA0C01,155g. In accordance with the growth characteristics of the rag5 mutant, KlGlk1 phosphorylates glucose, but fails to act on fructose as a sugar substrate. Multiple sequence alignment indicates the presence of at least one glucokinase gene in all sequenced yeast genomes.


Assuntos
Regulação Fúngica da Expressão Gênica , Glucoquinase , Kluyveromyces/enzimologia , Sequência de Aminoácidos , Frutose/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Proteínas Fúngicas/metabolismo , Glucoquinase/química , Glucoquinase/genética , Glucoquinase/isolamento & purificação , Glucoquinase/metabolismo , Glucose/metabolismo , Humanos , Kluyveromyces/genética , Kluyveromyces/crescimento & desenvolvimento , Dados de Sequência Molecular , Fosforilação , Filogenia , Alinhamento de Sequência , Especificidade por Substrato
13.
Curr Genet ; 44(5): 268-76, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14530868

RESUMO

We previously showed that, unlike other yeasts, Hansenula polymorpha possesses a glucokinase HPGLK1 that can mediate glucose repression in this yeast, although it cannot replace the regulatory function of hexokinase 2 in Saccharomyces cerevisiae. In the present study, the H. polymorpha hexokinase gene HPHXK1 was cloned by complementation of the glucose growth deficiency of the H. polymorpha double kinase-negative mutant A31-10 with a genomic library. The sequence of the 483-amino acid hexokinase protein deduced from the HPHXK1 gene showed the highest degree of identity (56%) with hexokinase from Schwanniomyces occidentalis, whereas the identity with hexokinase from Kluyveromyces lactis and both hexokinases from Sac. cerevisiae was 55%. The hexokinase protein was purified from crude extracts of H. polymorpha, using ion exchange chromatography and gel filtration. The K(m) values of the purified enzyme for glucose, fructose and ATP were 0.26 mM, 1.1 mM and 0.32 mM, respectively. H. polymorpha hexokinase was inhibited by trehalose-6-phosphate ( K(i)=12 microM) and ADP ( K(i)=1.6 mM), but not by glucose-6-phosphate. Transformation of a H. polymorpha hexokinase-negative mutant with a plasmid carrying the HPHXK1 gene restored the ability of the mutant to phosphorylate fructose and to repress the synthesis of alcohol oxidase and catalase by fructose. Therefore, hexokinase is specifically needed for the establishment of fructose repression in H. polymorpha.


Assuntos
Proteínas Fúngicas/genética , Proteínas Fúngicas/fisiologia , Hexoquinase/genética , Hexoquinase/fisiologia , Pichia/enzimologia , Sequência de Bases , Clonagem Molecular , Inibidores Enzimáticos/farmacologia , Frutose/metabolismo , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Glucose/metabolismo , Hexoquinase/metabolismo , Dados de Sequência Molecular , Filogenia , Pichia/metabolismo , Alinhamento de Sequência , Especificidade por Substrato
14.
Yeast ; 21(6): 483-94, 2004 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-15116431

RESUMO

Hetero-octameric 6-phosphofructokinase (Pfk-1) from Saccharomyces cerevisiae is composed of two types of subunits, alpha and beta, which are encoded by the unlinked genes PFK1 and PFK2. Pfk single deletion mutants expressing only one type of subunit exhibit Pfk-1 activity in vivo which, however, is completely lost immediately after cell disruption. In order to elucidate the preconditions of the in vivo activity of the mutant enzymes composed of either alpha- or beta-subunits, we have investigated their potential interaction with selected heat shock and cytoskeletal proteins, employing co-immunoprecipitation and immunofluorescence microscopy. Western blot analysis identified the mitochondrial chaperonin Hsp60, as well as the cytoskeleton proteins alpha-tubulin and actin, in complexes with Pfk-1 that were co-precipitated from a cell-free extract of a pfk2 single deletion mutant expressing only the alpha-subunit. The interaction of the corresponding mutant enzyme and Hsp60 was found to depend on the ATP concentration of the extract. Immunofluorescence microscopy displayed a conspicuously filamentous arrangement of the Pfk-1 mutant protein, exclusively in the pfk2 single deletion mutant. The analysis of structure and activity of Pfk-1 expressed in S. cerevisiae mutant strains defective in various heat shock proteins (TRiC/CCT, Hsp70, Hsp 104) and in the respective wild-type background did not reveal significant differences.


Assuntos
Fosfofrutoquinase-1/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Actinas/metabolismo , Western Blotting , Citosol/enzimologia , Citosol/metabolismo , Proteínas de Choque Térmico/metabolismo , Microscopia de Fluorescência , Mutação , Testes de Precipitina , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Tubulina (Proteína)/metabolismo
15.
J Biol Chem ; 278(41): 39280-6, 2003 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-12882981

RESUMO

The Crabtree-negative yeast Kluyveromyces lactis is capable of adjusting its glycolytic flux to the requirements of respiration by tightly regulating glucose uptake. RAG5 encoding the only glucose and fructose phosphorylating enzyme present in K. lactis is required for the up-regulation of glucose transport and also for glucose repression. To understand the significance of the molecular identity and specific function(s) of the corresponding kinase to glucose signaling, RAG5 was overexpressed and its gene product KlHxk1 (Rag5p) isolated and characterized. Stopped-flow kinetics and sedimentation analysis indicated a monomer-homodimer equilibrium of KlHxk1 in a condition of catalysis, i.e. in the presence of substrates and products. The kinetic constants of ATP-dependent glucose phosphorylation identified a 53-kDa monomer as the high affinity/high activity form of the novel enzyme for both glycolytic substrates suggesting a control of glucose phosphorylation at the level of dimer formation and dissociation. In contrast to the highly homologous hexokinase isoenzyme 2 of Saccharomyces cerevisiae (ScHxk2), KlHxk1 was not inhibited by free ATP in a physiological range of nucleotide concentration. Mass spectrometric sequencing of tryptic peptides of KlHxk1 identified unmodified serine at amino acid position 156. The corresponding amino acid in ScHxk2 is serine 157, which represents the autophosphorylation-inactivation site. KlHxk1 did not display, however, the typical pattern of inactivation under the respective in vitro conditions and maintained a high residual glucose phosphorylating activity. The biophysical and functional data are discussed with respect to a possible regulatory role of KlHxk1 in glucose metabolism and signaling in K. lactis.


Assuntos
Hexoquinase/genética , Hexoquinase/metabolismo , Kluyveromyces/enzimologia , Kluyveromyces/genética , Sequência de Aminoácidos , Domínio Catalítico , Genes Fúngicos , Glucose/metabolismo , Hexoquinase/química , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Dados de Sequência Molecular , Estrutura Quaternária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serina/química , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA