Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Genet ; 14(11): e1007696, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30399145

RESUMO

The proteins Oskar (Osk) in Drosophila and Bucky ball (Buc) in zebrafish act as germ plasm organizers. Both proteins recapitulate germ plasm activities but seem to be unique to their animal groups. Here, we discover that Osk and Buc show similar activities during germ cell specification. Drosophila Osk induces additional PGCs in zebrafish. Surprisingly, Osk and Buc do not show homologous protein motifs that would explain their related function. Nonetheless, we detect that both proteins contain stretches of intrinsically disordered regions (IDRs), which seem to be involved in protein aggregation. IDRs are known to rapidly change their sequence during evolution, which might obscure biochemical interaction motifs. Indeed, we show that Buc binds to the known Oskar interactors Vasa protein and nanos mRNA indicating conserved biochemical activities. These data provide a molecular framework for two proteins with unrelated sequence but with equivalent function to assemble a conserved core-complex nucleating germ plasm.


Assuntos
Células Germinativas/metabolismo , Animais , Citoplasma/metabolismo , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Genes Reporter , Hidrogel de Polietilenoglicol-Dimetacrilato , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/metabolismo , Modelos Biológicos , Oócitos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Xenopus , Peixe-Zebra
2.
Development ; 138(14): 3043-54, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21693520

RESUMO

Dead cells in most epithelia are eliminated by cell extrusion. Here, we explore whether cell delamination in the amnioserosa, a seemingly stochastic event that results in the extrusion of a small fraction of cells and known to provide a force for dorsal closure, is contingent upon the receipt of an apoptotic signal. Through the analysis of mutant combinations and the profiling of apoptotic signals in situ, we establish spatial, temporal and molecular hierarchies in the link between death and delamination. We show that although an apoptotic signal is necessary and sufficient to provide cell-autonomous instructions for delamination, its induction during natural delamination occurs downstream of mitochondrial fragmentation. We further show that apoptotic regulators can influence both delamination and dorsal closure cell non-autonomously, presumably by influencing tissue mechanics. The spatial heterogeneities in delamination frequency and mitochondrial morphology suggest that mechanical stresses may underlie the activation of the apoptotic cascade through their influence on mitochondrial dynamics. Our results document for the first time the temporal propagation of an apoptotic signal in the context of cell behaviours that accomplish morphogenesis during development. They highlight the importance of mitochondrial dynamics and tissue mechanics in its regulation. Together, they provide novel insights into how apoptotic signals can be deployed to pattern tissues.


Assuntos
Apoptose/fisiologia , Adesão Celular/fisiologia , Drosophila/embriologia , Embrião não Mamífero/embriologia , Epitélio/embriologia , Transdução de Sinais/fisiologia , Animais , Caspases/metabolismo , Drosophila/genética , Imunofluorescência , Microscopia Confocal
3.
Gene Expr Patterns ; 18(1-2): 44-52, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26143227

RESUMO

In many animals, the germline is specified by maternal RNA-granules termed germ plasm. The correct localization of germ plasm during embryogenesis is therefore crucial for the specification of germ cells. In zebrafish, we previously identified Bucky ball (Buc) as a key regulator of germ plasm formation. Here, we used a Buc antibody to describe its continuous germ plasm localization. Moreover, we generated a transgenic Buc-GFP line for live imaging, which visualizes germ plasm from its assembly during oogenesis up to the larval stages. Live imaging of Buc-GFP generated stunning movies, as they highlighted the dynamic details of germ plasm movements. Moreover, we discovered that Buc was still detected in primordial germ cells 2 days after fertilization. Interestingly, the transgene rescued buc mutants demonstrating genetically that the Buc-GFP fusion protein is functional. These results show that Buc-GFP exerts all biochemical interactions essential for germline development and highlight the potential of this line to analyze the molecular regulation of germ plasm formation.


Assuntos
Células Germinativas/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Anticorpos/metabolismo , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Oócitos/citologia , Oócitos/metabolismo , Oogênese , Proteínas Recombinantes de Fusão/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/imunologia , Proteínas de Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA