Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Nature ; 588(7836): 124-129, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33268865

RESUMO

Ageing is a degenerative process that leads to tissue dysfunction and death. A proposed cause of ageing is the accumulation of epigenetic noise that disrupts gene expression patterns, leading to decreases in tissue function and regenerative capacity1-3. Changes to DNA methylation patterns over time form the basis of ageing clocks4, but whether older individuals retain the information needed to restore these patterns-and, if so, whether this could improve tissue function-is not known. Over time, the central nervous system (CNS) loses function and regenerative capacity5-7. Using the eye as a model CNS tissue, here we show that ectopic expression of Oct4 (also known as Pou5f1), Sox2 and Klf4 genes (OSK) in mouse retinal ganglion cells restores youthful DNA methylation patterns and transcriptomes, promotes axon regeneration after injury, and reverses vision loss in a mouse model of glaucoma and in aged mice. The beneficial effects of OSK-induced reprogramming in axon regeneration and vision require the DNA demethylases TET1 and TET2. These data indicate that mammalian tissues retain a record of youthful epigenetic information-encoded in part by DNA methylation-that can be accessed to improve tissue function and promote regeneration in vivo.


Assuntos
Envelhecimento/genética , Reprogramação Celular/genética , Metilação de DNA , Epigênese Genética , Olho , Regeneração Nervosa/genética , Visão Ocular/genética , Visão Ocular/fisiologia , Envelhecimento/fisiologia , Animais , Axônios/fisiologia , Linhagem Celular Tumoral , Sobrevivência Celular , Proteínas de Ligação a DNA/genética , Dependovirus/genética , Dioxigenases , Modelos Animais de Doenças , Olho/citologia , Olho/inervação , Olho/patologia , Feminino , Vetores Genéticos/genética , Glaucoma/genética , Glaucoma/patologia , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Camundongos , Camundongos Endogâmicos C57BL , Fator 3 de Transcrição de Octâmero/genética , Traumatismos do Nervo Óptico/genética , Proteínas Proto-Oncogênicas/genética , Células Ganglionares da Retina/citologia , Fatores de Transcrição SOXB1/genética , Transcriptoma/genética
2.
Radiology ; 302(3): 662-673, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34904871

RESUMO

Background Deep learning-based segmentation could facilitate rapid and reproducible T1 lesion load assessments, which is crucial for disease management in multiple sclerosis (MS). T1 unenhancing and contrast-enhancing lesions in MS are those that enhance or do not enhance after administration of a gadolinium-based contrast agent at T1-weighted MRI. Purpose To develop deep learning models for automated assessment of T1 unenhancing and contrast-enhancing lesions; to investigate if joint training improved performance; to reproduce a known ocrelizumab treatment response; and to evaluate the association of baseline T1-weighted imaging metrics with clinical outcomes in relapsing MS clinical trials. Materials and Methods Joint and individual deep learning models (U-Nets) were developed retrospectively on multimodal MRI data sets from large multicenter OPERA trials of relapsing MS (August 2011 to May 2015). The joint model included cross-network connections and a combined loss function. Models were trained on OPERA I data sets with three-fold cross-validation. OPERA II data sets were the internal test set. Dice coefficients, lesion true-positive and false-positive rates, and areas under the receiver operating characteristic curve (AUCs) were used to evaluate model performance. Association of baseline imaging metrics with clinical outcomes was assessed with Cox proportional hazards models. Results A total of 796 patients (3030 visits; mean age, 37 years ± 9; 521 women) from the OPERA II trial were evaluated. The joint model achieved a mean Dice coefficient of 0.77 and 0.74, lesion true-positive rate of 0.88 and 0.86, and lesion false-positive rate of 0.04 and 0.19 for T1 contrast-enhancing and T1 unenhancing lesion segmentation, respectively. Joint training improved performance for smaller T1 contrast-enhancing lesions (≤0.06 mL; individual training AUC: 0.75; joint training AUC: 0.87; P < .001). A significant ocrelizumab treatment effect (P < .001) was seen in reducing the mean number of T1 contrast-enhancing lesions at 24, 48, and 96 weeks (manual assessment at 24 weeks: 10 lesions in 366 patients with ocrelizumab, 141 lesions in 355 patients with interferon, 93% reduction; manual assessment at 48 weeks: six lesions in 355 patients with ocrelizumab, 150 lesions in 317 patients with interferon, 96% reduction; manual assessment at 96 weeks: five lesions in 340 patients with ocrelizumab, 157 lesions in 294 patients with interferon, 97% reduction; joint model assessment at 24 weeks: 19 lesions in 365 patients with ocrelizumab, 128 lesions in 354 patients with interferon, 86% reduction; joint model assessment at 48 weeks: 14 lesions in 355 patients with ocrelizumab, 121 lesions in 317 patients with interferon, 90% reduction; joint model assessment at 96 weeks: 10 lesions in 340 patients with ocrelizumab, 144 lesions in 294 patients with interferon, 94% reduction) and the mean number of new T1 unenhancing lesions across all follow-up examinations (manual assessment: 504 lesions in 1060 visits for ocrelizumab-treated patients, 1438 lesions in 965 visits for interferon-treated patients, 68% reduction; joint model assessment: 205 lesions in 1053 visits for ocrelizumab-treated patients, 661 lesions in 957 visits for interferon-treated patients, 78% reduction). Baseline T1 unenhancing total lesion volume was associated with clinical outcomes (manual hazard ratio [HR]: 1.12, P = .02; joint model HR: 1.11, P = .03). Conclusion Joint architecture and training improved segmentation of MRI T1 contrast-enhancing multiple sclerosis lesions, and both deep learning models had sufficiently high performance to detect an ocrelizumab treatment response consistent with manual assessments. ClinicalTrials.gov: NCT01247324 and NCT01412333 © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Talbott in this issue.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Aprendizado Profundo , Imageamento por Ressonância Magnética/métodos , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/tratamento farmacológico , Adulto , Meios de Contraste , Conjuntos de Dados como Assunto , Feminino , Humanos , Fatores Imunológicos/uso terapêutico , Masculino , Estudos Retrospectivos
3.
J Neuroinflammation ; 16(1): 184, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31570110

RESUMO

BACKGROUND: Glaucoma is a complex, multifactorial disease where apoptosis, microglia activation, and inflammation have been linked to the death of retinal ganglion cells (RGCs) and axon degeneration. We demonstrated previously that FasL-Fas signaling was required for axon degeneration and death of RGCs in chronic and inducible mouse models of glaucoma and that Fas activation triggered RGC apoptosis, glial activation, and inflammation. Here, we investigated whether targeting the Fas receptor with a small peptide antagonist, ONL1204, has anti-inflammatory and neuroprotective effects in a microbead-induced mouse model of glaucoma. METHODS: Intracameral injection of microbeads was used to elevate intraocular pressure (IOP) in Fas-deficient (Faslpr) mice and WT C57BL/6J mice that received an intravitreal injection of the Fas inhibitor, ONL1204 (2 µg/1 µl) (or vehicle only), on day 0 or day 7 after microbead injection. The IOP was monitored by rebound tonometry, and at 28 days post-microbead injection, Brn3a-stained RGCs and paraphenylenediamine (PPD)-stained axons were analyzed. The effects of ONL1204 on retinal microglia activation and the expression of inflammatory genes were analyzed by immunostaining of retinal flatmounts and quantitative PCR (qPCR). RESULTS: Rebound tonometry showed equivalent elevation of IOP in all groups of microbead-injected mice. At 28 days post-microbead injection, the RGC and axon counts from microbead-injected Faslpr mice were equivalent to saline-injected (no IOP elevation) controls. Treatment with ONL1204 also significantly reduced RGC death and loss of axons in microbead-injected WT mice when compared to vehicle-treated controls, even when administered after IOP elevation. Confocal analysis of Iba1-stained retinal flatmounts and qPCR demonstrated that ONL1204 also abrogated microglia activation and inhibited the induction of multiple genes implicated in glaucoma, including cytokines and chemokines (GFAP, Caspase-8, TNFα, IL-1ß, IL-6, IL-18, MIP-1α, MIP-1ß, MIP-2, MCPI, and IP10), components of the complement cascade (C3, C1Q), Toll-like receptor pathway (TLR4), and inflammasome pathway (NLRP3). CONCLUSIONS: These results serve as proof-of-principal that the small peptide inhibitor of the Fas receptor, ONL1204, can provide robust neuroprotection in an inducible mouse model of glaucoma, even when administered after IOP elevation. Moreover, Fas signaling contributes to the pathogenesis of glaucoma through activation of both apoptotic and inflammatory pathways.


Assuntos
Glaucoma/patologia , Degeneração Neural/patologia , Fármacos Neuroprotetores/farmacologia , Peptídeos/farmacologia , Células Ganglionares da Retina/efeitos dos fármacos , Receptor fas/antagonistas & inibidores , Animais , Axônios/efeitos dos fármacos , Axônios/metabolismo , Axônios/patologia , Morte Celular/efeitos dos fármacos , Modelos Animais de Doenças , Glaucoma/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Camundongos Endogâmicos C57BL , Degeneração Neural/metabolismo , Peptídeos/química , Células Ganglionares da Retina/patologia
4.
J Immunol ; 197(12): 4626-4638, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27849168

RESUMO

Glaucoma is a multifactorial disease resulting in the death of retinal ganglion cells (RGCs) and irreversible blindness. Glaucoma-associated RGC death depends on the proapoptotic and proinflammatory activity of membrane-bound Fas ligand (mFasL). In contrast to mFasL, the natural cleavage product, soluble Fas ligand (sFasL) inhibits mFasL-mediated apoptosis and inflammation and, therefore, is an mFasL antagonist. DBA/2J mice spontaneously develop glaucoma and, predictably, RGC destruction is exacerbated by expression of a mutated membrane-only FasL gene that lacks the extracellular cleavage site. Remarkably, one-time intraocular adeno-associated virus-mediated gene delivery of sFasL provides complete and sustained neuroprotection in the chronic DBA/2J and acute microbead-induced models of glaucoma, even in the presence of elevated intraocular pressure. This protection correlated with inhibition of glial activation, reduced production of TNF-α, and decreased apoptosis of RGCs and loss of axons. These data indicate that cleavage of FasL under homeostatic conditions, and the ensuing release of sFasL, normally limits the neurodestructive activity of FasL. The data further support the notion that sFasL, and not mFasL, contributes to the immune-privileged status of the eye.


Assuntos
Proteína Ligante Fas/metabolismo , Terapia Genética , Glaucoma/terapia , Neuroproteção , Células Ganglionares da Retina/fisiologia , Doença Aguda , Animais , Apoptose , Células Cultivadas , Doença Crônica , Dependovirus/genética , Modelos Animais de Doenças , Proteína Ligante Fas/genética , Feminino , Glaucoma/genética , Glaucoma/imunologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Transgênicos , Fator de Necrose Tumoral alfa/metabolismo
5.
Pharmaceuticals (Basel) ; 17(4)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38675477

RESUMO

The alternative pathway of the complement system is implicated in the etiology of age-related macular degeneration (AMD). Complement depletion with pegcetacoplan and avacincaptad pegol are FDA-approved treatments for geographic atrophy in AMD that, while effective, have clinically observed risks of choroidal neovascular (CNV) conversion, optic neuritis, and retinal vasculitis, leaving room for other equally efficacious but safer therapeutics, including Poly Sialic acid (PSA) nanoparticle (PolySia-NP)-actuated complement factor H (CFH) alternative pathway inhibition. Our previous paper demonstrated that PolySia-NP inhibits pro-inflammatory polarization and cytokine release. Here, we extend these findings by investigating the therapeutic potential of PolySia-NP to attenuate the alternative complement pathway. First, we show that PolySia-NP binds CFH and enhances affinity to C3b. Next, we demonstrate that PolySia-NP treatment of human serum suppresses alternative pathway hemolytic activity and C3b deposition. Further, we show that treating human macrophages with PolySia-NP is non-toxic and reduces markers of complement activity. Finally, we describe PolySia-NP-treatment-induced decreases in neovascularization and inflammatory response in a laser-induced CNV mouse model of neovascular AMD. In conclusion, PolySia-NP suppresses alternative pathway complement activity in human serum, human macrophage, and mouse CNV without increasing neovascularization.

6.
Pharmaceuticals (Basel) ; 17(4)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38675441

RESUMO

An inflammation-resolving polysialic acid-decorated PLGA nanoparticle (PolySia-NP) has been developed to treat geographic atrophy/age-related macular degeneration and other conditions caused by macrophage and complement over-activation. While PolySia-NPs have demonstrated pre-clinical efficacy, this study evaluated its systemic and intraocular safety. PolySia-NPs were evaluated in vitro for mutagenic activity using Salmonella strains and E. coli, with and without metabolic activation; cytotoxicity was evaluated based on its interference with normal mitosis. PolySia-NPs were administered intravenously in CD-1 mice and Sprague Dawley rats and assessed for survival and toxicity. Intravitreal (IVT) administration in Dutch Belted rabbits and non-human primates was assessed for ocular or systemic toxicity. In vitro results indicate that PolySia-NPs did not induce mutagenicity or cytotoxicity. Intravenous administration did not show clastogenic activity, effects on survival, or toxicity. A single intravitreal (IVT) injection and two elevated repeat IVT doses of PolySia-NPs separated by 7 days in rabbits showed no signs of systemic or ocular toxicity. A single IVT inoculation of PolySia-NPs in non-human primates demonstrated no adverse clinical or ophthalmological effects. The demonstration of systemic and ocular safety of PolySia-NPs supports its advancement into human clinical trials as a promising therapeutic approach for systemic and retinal degenerative diseases caused by chronic immune activation.

7.
J Neurosci ; 32(29): 9917-30, 2012 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-22815507

RESUMO

Chronic drug users account for a third of all cases of AIDS in the United States and the progression to AIDS dementia is accelerated in opiate drug abusers. Clinically, microglial activation better correlates with HIV-associated neurocognitive disorders (HAND) than productive HIV-1 infection in the CNS. Moreover, pneumococcal pneumonia is the most common opportunistic infection in individuals with HAND. We show that coinfection with Streptococcus pneumoniae may be a contributing factor in the increased prevalence of HAND in the opioid-dependent population. To date, there have been no studies published implicating the Toll-like receptors (TLR) in the neurocognitive disorders associated with NeuroAIDS in the context of opportunistic infection. Our studies show for the first time, in a morphine-dependent model, synergistic increase and activation of TLR expression in the presence of HIV-1 protein TAT and S. pneumoniae with a significant increase in proinflammatory cytokines (IL-6, TNF-α) levels. Furthermore, concurrent increases in reactive oxygen species and nitric oxide production leading to increased caspase 3 activation are also observed in both murine and human microglial cells. These effects are recapitulated with TLR 2, 4, and 9 cognate ligands (Pam3CSK4, LPS, and CpG) and significantly attenuated in TLR 2 and 4 knock-out mice and TLR2/4 double knock-out mice. Therefor, our findings clearly suggest for the first time that activation of TLRs on microglia cells by morphine and TAT in the context of S. pneumoniae infection may be a potential mechanism for the increased prevalence of HAND in HIV-infected opioid-dependent patients.


Assuntos
Coinfecção/metabolismo , Infecções por HIV/metabolismo , Microglia/efeitos dos fármacos , Morfina/farmacologia , Pneumonia Pneumocócica/metabolismo , Receptores Toll-Like/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Citocinas/metabolismo , Infecções por HIV/complicações , HIV-1 , Masculino , Camundongos , Camundongos Knockout , Microglia/metabolismo , Pneumonia Pneumocócica/complicações , Receptores Opioides mu/genética , Receptores Opioides mu/metabolismo , Streptococcus pneumoniae , Receptores Toll-Like/genética
8.
J Magn Reson Imaging ; 38(1): 36-45, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23225622

RESUMO

PURPOSE: To explore the use of approximate entropy (ApEn) as an index of the complexity and the synchronicity of resting state blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) in normal aging and cognitive decline associated with familial Alzheimer's disease (fAD). MATERIALS AND METHODS: Resting state BOLD fMRI data were acquired at 3T from two independent cohorts of subjects consisting of healthy young (age 23 ± 2 years, n = 8) and aged volunteers (age 66 ± 3 years, n = 8), as well as 22 fAD associated subjects (14 mutation carriers, age 41.2 ± 15.8 years; and eight nonmutation carrying family members, age 28.8 ± 5.9 years). Mean ApEn values were compared between the two age groups and correlated with cognitive performance in the fAD group. Cross-ApEn (C-ApEn) was further calculated to assess the asynchrony between precuneus and the rest of the brain. RESULTS: Complexity of brain activity measured by mean ApEn in gray and white matter decreased with normal aging. In the fAD group, cognitive impairment was associated with decreased mean ApEn in gray matter as well as decreased regional ApEn in right precuneus, right lateral parietal regions, left precentral gyrus, and right paracentral gyrus. A pattern of asynchrony between BOLD fMRI series emerged from C-ApEn analysis, with significant regional anti-correlation with cross-correlation coefficient of functional connectivity analysis. CONCLUSION: ApEn and C-ApEn may be useful for assessing the complexity and synchronicity of brain activity in normal aging and cognitive decline associated with neurodegenerative diseases.


Assuntos
Envelhecimento/fisiologia , Mapeamento Encefálico/métodos , Córtex Cerebral/fisiologia , Sincronização Cortical/fisiologia , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/fisiologia , Oxigênio/sangue , Idoso de 80 Anos ou mais , Conectoma/métodos , Feminino , Humanos , Masculino , Adulto Jovem
9.
Sci Rep ; 13(1): 4102, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36914715

RESUMO

T2 lesion quantification plays a crucial role in monitoring disease progression and evaluating treatment response in multiple sclerosis (MS). We developed a 3D, multi-arm U-Net for T2 lesion segmentation, which was trained on a large, multicenter clinical trial dataset of relapsing MS. We investigated its generalization to other relapsing and primary progressive MS clinical trial datasets, and to an external dataset from the MICCAI 2016 MS lesion segmentation challenge. Additionally, we assessed the model's ability to reproduce the separation of T2 lesion volumes between treatment and control arms; and the association of baseline T2 lesion volumes with clinical disability scores compared with manual lesion annotations. The trained model achieved a mean dice coefficient of ≥ 0.66 and a lesion detection sensitivity of ≥ 0.72 across the internal test datasets. On the external test dataset, the model achieved a mean dice coefficient of 0.62, which is comparable to 0.59 from the best model in the challenge, and a lesion detection sensitivity of 0.68. Lesion detection performance was reduced for smaller lesions (≤ 30 µL, 3-10 voxels). The model successfully maintained the separation of the longitudinal changes in T2 lesion volumes between the treatment and control arms. Such tools could facilitate semi-automated MS lesion quantification; and reduce rater burden in clinical trials.


Assuntos
Fenômenos Biológicos , Esclerose Múltipla , Humanos , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Imageamento por Ressonância Magnética , Progressão da Doença , Generalização Psicológica , Recidiva
10.
Pharmaceuticals (Basel) ; 16(12)2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38139861

RESUMO

Age-related macular degeneration (AMD), a leading cause of visual loss and dysfunction worldwide, is a disease initiated by genetic polymorphisms that impair the negative regulation of complement. Proteomic investigation points to altered glycosylation and loss of Siglec-mediated glyco-immune checkpoint parainflammatory and inflammatory homeostasis as the main determinant for the vision impairing complications of macular degeneration. The effect of altered glycosylation on microglial maintained retinal para-inflammatory homeostasis and eventual recruitment and polarization of peripheral blood monocyte-derived macrophages (PBMDMs) into the retina can explain the phenotypic variability seen in this clinically heterogenous disease. Restoring glyco-immune checkpoint control with a sialic acid mimetic agonist targeting microglial/macrophage Siglecs to regain retinal para-inflammatory and inflammatory homeostasis is a promising therapeutic that could halt the progression of and improve visual function in all stages of macular degeneration.

11.
Front Immunol ; 14: 1237016, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38045700

RESUMO

Age-related macular degeneration (AMD) is a chronic, progressive retinal disease characterized by an inflammatory response mediated by activated macrophages and microglia infiltrating the inner layer of the retina. In this study, we demonstrate that inhibition of macrophages through Siglec binding in the AMD eye can generate therapeutically useful effects. We show that Siglecs-7, -9 and -11 are upregulated in AMD associated M0 and M1 macrophages, and that these can be selectively targeted using polysialic acid (PolySia)-nanoparticles (NPs) to control dampen AMD-associated inflammation. In vitro studies showed that PolySia-NPs bind to macrophages through human Siglecs-7, -9, -11 as well as murine ortholog Siglec-E. Following treatment with PolySia-NPs, we observed that the PolySia-NPs bound and agonized the macrophage Siglecs resulting in a significant decrease in the secretion of IL-6, IL-1ß, TNF-α and VEGF, and an increased secretion of IL-10. In vivo intravitreal (IVT) injection of PolySia-NPs was found to be well-tolerated and safe making it effective in preventing thinning of the retinal outer nuclear layer (ONL), inhibiting macrophage infiltration, and restoring electrophysiological retinal function in a model of bright light-induced retinal degeneration. In a clinically validated, laser-induced choroidal neovascularization (CNV) model of exudative AMD, PolySia-NPs reduced the size of neovascular lesions with associated reduction in macrophages. The PolySia-NPs described herein are therefore a promising therapeutic strategy for repolarizing pro-inflammatory macrophages to a more anti-inflammatory, non-angiogenic phenotype, which play a key role in the pathophysiology of non-exudative AMD.


Assuntos
Degeneração Macular , Nanopartículas , Degeneração Retiniana , Camundongos , Humanos , Animais , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico , Degeneração Macular/tratamento farmacológico , Macrófagos , Inflamação/tratamento farmacológico
12.
Cell Reprogram ; 25(6): 288-299, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38060815

RESUMO

Glaucoma, a chronic neurodegenerative disease, is a leading cause of age-related blindness worldwide and characterized by the progressive loss of retinal ganglion cells (RGCs) and their axons. Previously, we developed a novel epigenetic rejuvenation therapy, based on the expression of the three transcription factors Oct4, Sox2, and Klf4 (OSK), which safely rejuvenates RGCs without altering cell identity in glaucomatous and old mice after 1 month of treatment. In the current year-long study, mice with continuous or cyclic OSK expression induced after glaucoma-induced vision damage had occurred were tracked for efficacy, duration, and safety. Surprisingly, only 2 months of OSK fully restored impaired vision, with a restoration of vision for 11 months with prolonged expression. In RGCs, transcription from the doxycycline (DOX)-inducible Tet-On AAV system, returned to baseline 4 weeks after DOX withdrawal. Significant vision improvements remained for 1 month post switching off OSK, after which the vision benefit gradually diminished but remained better than baseline. Notably, no adverse effects on retinal structure or body weight were observed in glaucomatous mice with OSK continuously expressed for 21 months providing compelling evidence of efficacy and safety. This work highlights the tremendous therapeutic potential of rejuvenating gene therapies using OSK, not only for glaucoma but also for other ocular and systemic injuries and age-related diseases.


Assuntos
Glaucoma , Doenças Neurodegenerativas , Camundongos , Animais , Pressão Intraocular , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/terapia , Glaucoma/terapia , Glaucoma/tratamento farmacológico , Retina/metabolismo , Terapia Genética , Modelos Animais de Doenças
13.
PLoS Pathog ; 6(4): e1000842, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20419144

RESUMO

Cells of the myeloid lineage are significant targets for human immunodeficiency virus (HIV) in humans and simian immunodeficiency virus (SIV) in monkeys. Monocytes play critical roles in innate and adaptive immunity during inflammation. We hypothesize that specific subsets of monocytes expand with AIDS and drive central nervous system (CNS) disease. Additionally, there may be expansion of cells from the bone marrow through blood with subsequent macrophage accumulation in tissues driving pathogenesis. To identify monocytes that recently emigrated from bone marrow, we used 5-bromo-2'-deoxyuridine (BrdU) labeling in a longitudinal study of SIV-infected CD8+ T lymphocyte depleted macaques. Monocyte expansion and kinetics in blood was assessed and newly migrated monocyte/macrophages were identified within the CNS. Five animals developed rapid AIDS with differing severity of SIVE. The percentages of BrdU+ monocytes in these animals increased dramatically, early after infection, peaking at necropsy where the percentage of BrdU+ monocytes correlated with the severity of SIVE. Early analysis revealed changes in the percentages of BrdU+ monocytes between slow and rapid progressors as early as 8 days and consistently by 27 days post infection. Soluble CD163 (sCD163) in plasma correlated with the percentage of BrdU+ monocytes in blood, demonstrating a relationship between monocyte activation and expansion with disease. BrdU+ monocytes/macrophages were found within perivascular spaces and SIVE lesions. The majority (80-90%) of the BrdU+ cells were Mac387+ that were not productively infected. There was a minor population of CD68+BrdU+ cells (<10%), very few of which were infected (<1% of total BrdU+ cells). Our results suggest that an increased rate of monocyte recruitment from bone marrow into the blood correlates with rapid progression to AIDS, and the magnitude of BrdU+ monocytes correlates with the severity of SIVE.


Assuntos
Encefalite Viral/imunologia , Monócitos/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/patologia , Animais , Antígenos CD/sangue , Antígenos CD/imunologia , Antígenos de Diferenciação Mielomonocítica/sangue , Antígenos de Diferenciação Mielomonocítica/imunologia , Células da Medula Óssea/imunologia , Separação Celular , Encefalite Viral/etiologia , Encefalite Viral/patologia , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Imuno-Histoquímica , Macaca , Microscopia Confocal , Receptores de Superfície Celular/sangue , Receptores de Superfície Celular/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/complicações , Vírus da Imunodeficiência Símia , Carga Viral
14.
J Infect Dis ; 204(1): 154-63, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21628670

RESUMO

CD163, a monocyte- and macrophage-specific scavenger receptor, is shed during activation as soluble CD163 (sCD163). We have previously demonstrated that monocyte expansion from bone marrow with simian immunodeficiency virus (SIV) infection correlated with plasma sCD163, the rate of AIDS progression, and the severity of macrophage-mediated pathogenesis. Here, we examined sCD163 in human immunodeficiency virus (HIV) infection. sCD163 was elevated in the plasma of individuals with chronic HIV infection (>1 year in duration), compared with HIV-seronegative individuals. With effective antiretroviral therapy (ART), sCD163 levels decreased in parallel with HIV RNA levels but did not return to HIV-seronegative levels, suggesting the presence of residual monocyte/macrophage activation even with plasma viral loads below the limit of detection. In individuals with early HIV infection (≤1 year in duration), effective ART resulted in decreased sCD163 levels that were comparable to levels in HIV-seronegative individuals. sCD163 levels in plasma were positively correlated with the percentage of CD14+CD16+ monocytes and activated CD8+HLA-DR+CD38+ T lymphocytes and were inversely correlated with CD163 expression on CD14+CD16+ monocytes. With ART interruption in subjects with early HIV infection, sCD163 and plasma virus levels spiked but rapidly returned to baseline with reinitiation of ART. This study points to the utility of monocyte- and macrophage-derived sCD163 as a marker of HIV activity that links viral replication with monocyte and macrophage activation. These observations underscore the significance of monocyte and macrophage immune responses with HIV pathogenesis.


Assuntos
Antígenos CD/sangue , Antígenos de Diferenciação Mielomonocítica/sangue , Biomarcadores/sangue , Infecções por HIV/imunologia , Macrófagos/metabolismo , Monócitos/metabolismo , Receptores de Superfície Celular/sangue , Adulto , Fármacos Anti-HIV/administração & dosagem , Doença Crônica , Feminino , Infecções por HIV/tratamento farmacológico , Humanos , Masculino , Pessoa de Meia-Idade , Plasma/química , RNA Viral/sangue , Carga Viral
15.
Am J Pathol ; 176(2): 786-99, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20042674

RESUMO

Patients prescribed morphine for the management of chronic pain, and chronic heroin abusers, often present with complications such as increased susceptibility to opportunistic infections and inadequate healing of wounds. We investigated the effect of morphine on wound-healing events in the presence of an infection in an in vivo murine model that mimics the clinical manifestations seen in opioid user and abuser populations. We show for the first time that in the presence of an inflammatory inducer, lipopolysaccharide, chronic morphine treatment results in a marked decrease in wound closure, compromised wound integrity, and increased bacterial sepsis. Morphine treatment resulted in a significant delay and reduction in both neutrophil and macrophage recruitment to the wound site. The delay and reduction in neutrophil reduction was attributed to altered early expression of keratinocyte derived cytokine and was independent of macrophage inflammatory protein 2 expression, whereas suppression of macrophage infiltration was attributed to suppressed levels of the potent macrophage chemoattractant monocyte chemotactic protein-1. When the effects of chronic morphine on later wound healing events were investigated, a significant suppression in angiogenesis and myofibroblast recruitment were observed in animals that received chronic morphine administration. Taken together, our findings indicate that morphine treatment results in a delay in the recruitment of cellular events following wounding, resulting in a lack of bacterial clearance and delayed wound closure.


Assuntos
Quimiotaxia de Leucócito/efeitos dos fármacos , Imunidade Celular/efeitos dos fármacos , Morfina/farmacologia , Cicatrização/efeitos dos fármacos , Ferimentos e Lesões/imunologia , Analgésicos Opioides/administração & dosagem , Analgésicos Opioides/farmacologia , Animais , Inibição de Migração Celular/efeitos dos fármacos , Células Cultivadas , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/imunologia , Esquema de Medicação , Avaliação Pré-Clínica de Medicamentos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Morfina/administração & dosagem , Fatores de Tempo , Ferimentos e Lesões/patologia
16.
Elife ; 92020 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-32716843

RESUMO

We report quantitative label-free imaging with phase and polarization (QLIPP) for simultaneous measurement of density, anisotropy, and orientation of structures in unlabeled live cells and tissue slices. We combine QLIPP with deep neural networks to predict fluorescence images of diverse cell and tissue structures. QLIPP images reveal anatomical regions and axon tract orientation in prenatal human brain tissue sections that are not visible using brightfield imaging. We report a variant of U-Net architecture, multi-channel 2.5D U-Net, for computationally efficient prediction of fluorescence images in three dimensions and over large fields of view. Further, we develop data normalization methods for accurate prediction of myelin distribution over large brain regions. We show that experimental defects in labeling the human tissue can be rescued with quantitative label-free imaging and neural network model. We anticipate that the proposed method will enable new studies of architectural order at spatial scales ranging from organelles to tissue.


Microscopy is central to biological research and has enabled scientist to study the structure and dynamics of cells and their components within. Often, fluorescent dyes or trackers are used that can be detected under the microscope. However, this procedure can sometimes interfere with the biological processes being studied. Now, Guo, Yeh, Folkesson et al. have developed a new approach to examine structures within tissues and cells without the need for a fluorescent label. The technique, called QLIPP, uses the phase and polarization of the light passing through the sample to get information about its makeup. A computational model was used to decode the characteristics of the light and to provide information about the density and orientation of molecules in live cells and brain tissue samples of mice and human. This way, Guo et al. were able to reveal details that conventional microscopy would have missed. Then, a type of machine learning, known as 'deep learning', was used to translate the density and orientation images into fluorescence images, which enabled the researchers to predict specific structures in human brain tissue sections. QLIPP can be added as a module to a microscope and its software is available open source. Guo et al. hope that this approach can be used across many fields of biology, for example, to map the connectivity of nerve cells in the human brain or to identify how cells respond to infection. However, further work in automating other aspects, such as sample preparation and analysis, will be needed to realize the full benefits.


Assuntos
Encéfalo/anatomia & histologia , Aprendizado Profundo , Feto/anatomia & histologia , Imageamento Tridimensional/métodos , Animais , Anisotropia , Humanos , Camundongos
17.
PLoS One ; 14(1): e0208713, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30640920

RESUMO

OBJECTIVES: Ocular hypertension is a primary risk factor for glaucoma and results in retinal ganglion cell (RGC) degeneration. Current animal models of glaucoma lack severe RGC cell death as seen in glaucoma, making assessment of physiological mediators of cell death difficult. We developed a modified mouse model of ocular hypertension whereby long-lasting elevation of intraocular pressure (IOP) is achieved, resulting in significant reproducible damage to RGCs. RESULTS: In this model, microbeads are mixed with hyaluronic acid and injected into the anterior chamber of C57BL/6J mice. The hyaluronic acid allows for a gradual release of microbeads, resulting in sustained blockage of Schlemm's canal. IOP elevation was bimodal during the course of the model's progression. The first peak occurred 1 hours after beads injection, with an IOP value of 44.69 ± 6.00 mmHg, and the second peak occurred 6-12 days post-induction, with an IOP value of 34.91 ± 5.21 mmHg. RGC damage was most severe in the peripheral retina, with a loss of 64.1% compared to that of untreated eyes, while the midperiphery exhibited a 32.4% loss, 4 weeks following disease induction. CONCLUSIONS: These results suggest that sustained IOP elevation causes more RGC damage in the periphery than in the midperiphery of the retina. This model yields significant and reproducible RGC degeneration.


Assuntos
Hipertensão Ocular/fisiopatologia , Células Ganglionares da Retina/patologia , Animais , Modelos Animais de Doenças , Glaucoma/metabolismo , Glaucoma/fisiopatologia , Imuno-Histoquímica , Pressão Intraocular/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hipertensão Ocular/metabolismo , Retina/metabolismo , Retina/fisiopatologia , Degeneração Retiniana/metabolismo , Degeneração Retiniana/fisiopatologia , Células Ganglionares da Retina/metabolismo , Tomografia de Coerência Óptica
18.
Int J Radiat Oncol Biol Phys ; 71(5): 1553-62, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18538491

RESUMO

PURPOSE: Stereotactic radiotherapy (SRT) is fast becoming the method of choice for treatment of nonsuperficial brain lesions. SRT treatment plans of malignant brain tumors typically incorporate a 20-mm isotropic margin to account for microscopic tumor spread; however, distant or progressive tumors occur outside this margin. Our hypothesis is that paths of elevated water diffusion may provide a preferred route for transport or migration of cancer cells. If our hypothesis is correct, then future SRT treatment volumes could be modified to provide elongated treatment margins along the paths of elevated water diffusion, thereby creating a biologically better treatment plan that may reduce the incidence of progression. METHODS AND MATERIALS: Magnetic resonance diffusion tensor imaging (DTI) datasets were acquired on patient subjects before the appearance of >5 mm diameter progressive lesions or secondary tumors. DTI was performed using an echo-planar imaging sequence on a 1.5T clinical General Electric scanner with voxel dimensions of 0.98 x 0.98 x 6 mm. After SRT, patients were given repeated magnetic resonance imaging follow-ups at regular intervals to identify early tumor progression. When progressive disease was detected, DTIstudio and FMRIB Software Library software was used to compute paths of preferred water diffusion through the primary tumor site and the site of progression. RESULTS: Our preliminary results on 14 patient datasets suggest a strong relationship between routes of elevated water diffusion from the primary tumor and the location of tumor progression. CONCLUSIONS: Further investigation is therefore warranted. Future work will employ more sophisticated fiber analysis in a prospective study.


Assuntos
Astrocitoma/secundário , Neoplasias Encefálicas/patologia , Movimento Celular/fisiologia , Imagem de Difusão por Ressonância Magnética/métodos , Astrocitoma/cirurgia , Água Corporal/fisiologia , Neoplasias Encefálicas/cirurgia , Progressão da Doença , Glioblastoma/secundário , Glioblastoma/cirurgia , Humanos , Metástase Neoplásica , Neuronavegação , Radiocirurgia
19.
Radiother Oncol ; 123(2): 209-217, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28460824

RESUMO

BACKGROUND AND PURPOSE: Regional differences in sensitivity to white matter damage after brain radiotherapy (RT) are not well-described. We characterized the spatial heterogeneity of dose-response across white matter tracts using diffusion tensor imaging (DTI). MATERIALS AND METHODS: Forty-nine patients with primary brain tumors underwent MRI with DTI before and 9-12months after partial-brain RT. Maps of fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) were generated. Atlas-based white matter tracts were identified. A secondary analysis using skeletonized tracts was also performed. Linear mixed-model analysis of the relationship between mean and max dose and percent change in DTI metrics was performed. RESULTS: Tracts with the strongest correlation of FA change with mean dose were the fornix (-0.46 percent/Gy), cingulum bundle (-0.44 percent/Gy), and body of corpus callosum (-0.23 percent/Gy), p<.001. These tracts also showed dose-sensitive changes in MD and RD. In the skeletonized analysis, the fornix and cingulum bundle remained highly dose-sensitive. Maximum and mean dose were similarly predictive of DTI change. CONCLUSIONS: The corpus callosum, cingulum bundle, and fornix show the most prominent dose-dependent changes following RT. Future studies examining correlation with cognitive functioning and potential avoidance of critical white matter regions are warranted.


Assuntos
Neoplasias Encefálicas/radioterapia , Substância Branca/efeitos da radiação , Adulto , Neoplasias Encefálicas/diagnóstico por imagem , Imagem de Tensor de Difusão , Relação Dose-Resposta à Radiação , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Substância Branca/patologia
20.
Int J Radiat Oncol Biol Phys ; 97(2): 263-269, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28068234

RESUMO

PURPOSE: After radiation therapy (RT) to the brain, patients often experience memory impairment, which may be partially mediated by damage to the hippocampus. Hippocampal sparing in RT planning is the subject of recent and ongoing clinical trials. Calculating appropriate hippocampal dose constraints would be improved by efficient in vivo measurements of hippocampal damage. In this study we sought to determine whether brain RT was associated with dose-dependent hippocampal atrophy. METHODS AND MATERIALS: Hippocampal volume was measured with magnetic resonance imaging (MRI) in 52 patients who underwent fractionated, partial brain RT for primary brain tumors. Study patients had high-resolution, 3-dimensional volumetric MRI before and 1 year after RT. Images were processed using software with clearance from the US Food and Drug Administration and Conformité Européene marking for automated measurement of hippocampal volume. Automated results were inspected visually for accuracy. Tumor and surgical changes were censored. Mean hippocampal dose was tested for correlation with hippocampal atrophy 1 year after RT. Average hippocampal volume change was also calculated for hippocampi receiving high (>40 Gy) or low (<10 Gy) mean RT dose. A multivariate analysis was conducted with linear mixed-effects modeling to evaluate other potential predictors of hippocampal volume change, including patient (random effect), age, hemisphere, sex, seizure history, and baseline volume. Statistical significance was evaluated at α = 0.05. RESULTS: Mean hippocampal dose was significantly correlated with hippocampal volume loss (r=-0.24, P=.03). Mean hippocampal volume was significantly reduced 1 year after high-dose RT (mean -6%, P=.009) but not after low-dose RT. In multivariate analysis, both RT dose and patient age were significant predictors of hippocampal atrophy (P<.01). CONCLUSIONS: The hippocampus demonstrates radiation dose-dependent atrophy after treatment for brain tumors. Quantitative MRI is a noninvasive imaging technique capable of measuring radiation effects on intracranial structures. This technique could be investigated as a potential biomarker for development of reliable dose constraints for improved cognitive outcomes.


Assuntos
Neoplasias Encefálicas/radioterapia , Hipocampo/efeitos da radiação , Imageamento por Ressonância Magnética/métodos , Adulto , Fatores Etários , Idoso , Atrofia/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Fracionamento da Dose de Radiação , Relação Dose-Resposta à Radiação , Feminino , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Humanos , Masculino , Transtornos da Memória/etiologia , Pessoa de Meia-Idade , Análise Multivariada , Tamanho do Órgão/efeitos da radiação , Estudos Retrospectivos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA