Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Proc Biol Sci ; 291(2021): 20240262, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38654646

RESUMO

The fossil fish Ptychodus Agassiz, 1834, characterized by a highly distinctive grinding dentition and an estimated gigantic body size (up to around 10 m), has remained one of the most enigmatic extinct elasmobranchs (i.e. sharks, skates and rays) for nearly two centuries. This widespread Cretaceous taxon is common in Albian to Campanian deposits from almost all continents. However, specimens mostly consist of isolated teeth or more or less complete dentitions, whereas cranial and post-cranial skeletal elements are very rare. Here we describe newly discovered material from the early Late Cretaceous of Mexico, including complete articulated specimens with preserved body outline, which reveals crucial information on the anatomy and systematic position of Ptychodus. Our phylogenetic and ecomorphological analyses indicate that ptychodontids were high-speed (tachypelagic) durophagous lamniforms (mackerel sharks), which occupied a specialized predatory niche previously unknown in fossil and extant elasmobranchs. Our results support the view that lamniforms were ecomorphologically highly diverse and represented the dominant group of sharks in Cretaceous marine ecosystems. Ptychodus may have fed predominantly on nektonic hard-shelled prey items such as ammonites and sea turtles rather than on benthic invertebrates, and its extinction during the Campanian, well before the end-Cretaceous crisis, might have been related to competition with emerging blunt-toothed globidensine and prognathodontine mosasaurs.


Assuntos
Fósseis , Filogenia , Tubarões , Animais , Fósseis/anatomia & histologia , México , Tubarões/anatomia & histologia , Tubarões/classificação , Tubarões/fisiologia , Evolução Biológica , Dente/anatomia & histologia
2.
Paleobiology ; 49(2): 329-341, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37564372

RESUMO

Despite the rich fossil record of Neogene chondrichthyans (chimaeras, sharks, rays, and skates) from Europe, little is known about the macroevolutionary processes that generated their current diversity and geographical distribution. We compiled 4368 Neogene occurrences comprising 102 genera, 41 families, and 12 orders from four European regions (Atlantic, Mediterranean, North Sea, and Paratethys) and evaluated their diversification trajectories and paleobiogeographic patterns. In all regions analyzed, we found that generic richness increased during the early Miocene, then decreased sharply during the middle Miocene in the Paratethys, and moderately during the late Miocene and Pliocene in the Mediterranean and North Seas. Origination rates display the most significant pulses in the early Miocene in all regions. Extinction rate pulses varied across regions, with the Paratethys displaying the most significant pulses during the late Miocene and the Mediterranean and North Seas during the late Miocene and early Pliocene. Overall, up to 27% and 56% of the European Neogene genera are now globally and regionally extinct, respectively. The observed pulses of origination and extinction in the different regions coincide with warming and cooling events that occurred during the Neogene globally and regionally. Our study reveals complex diversity dynamics of Neogene chondrichthyans from Europe and their distinct biogeographic composition despite the multiple marine passages that connected the different marine regions during this time.

3.
J Vertebr Paleontol ; 42(2): e2162909, 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-37559798

RESUMO

Isolated teeth belonging to the genus Ptychodus Agassiz, 1834 (Chondrichthyes; Elasmobranchii) from the Upper Cretaceous of the Ryazan and Moscow Oblast regions (European Russia) are described and discussed in detail herein. The taxonomic composition of the Ptychodus assemblage from the Ryazan region is very diverse including the first records of the cuspidate species P. altior and P. anonymus, which thus is largely consistent with those from other contemporaneous European localities. Ptychodus ubiquitously inhabited epicontinental seas of Europe during most of the Cretaceous with the most diverse assemblages coming from southern England, northern Italy, Belgium, and European Russia. Additionally, the material documented here from the Cenomanian of Varavinsky ravine area (Moscow Oblast) represents the northernmost occurrence of Ptychodus hitherto reported from Europe. It is evident that the Late Cretaceous shallow seas of the Russian platform represented a crucial pathway for the dispersal of Ptychodus from the European peri-Tethys to the eastern margins of the Neo-Tethyan Ocean. The Albian-Campanian records of Ptychodus from Europe indicate that its dominance in the peri-Tethys persisted for most of its evolutionary history. A local temperature drop across most of the European shallow seas probably contributed to the narrowing of its geographic range in the peri-Tethyan seas towards the end of the Mesozoic Era. The fossil remains of Ptychodus documented herein are accordingly of utmost importance for better understanding the taxonomic composition of Russian fossil ichthyofaunas and also inform about the dispersal of Ptychodus towards western and eastern peri-Tethyan seas during the Late Cretaceous.

4.
Proc Biol Sci ; 289(1977): 20220808, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35765842

RESUMO

Shark teeth are one of the most abundant vertebrate fossils, and because tooth size generally correlates with body size, their accumulations document the size structure of populations. Understanding how ecological and environmental processes influence size structure, and how this extends to influence these dental distributions, may offer a window into the ecological and environmental dynamics of past and present shark populations. Here, we examine the dental distributions of sand tigers, including extant Carcharias taurus and extinct Striatolamia macrota, to reconstruct the size structure for a contemporary locality and four Eocene localities. We compare empirical distributions against expectations from a population simulation to gain insight into potential governing ecological processes. Specifically, we investigate the influence of dispersal flexibility to and from protected nurseries. We show that changing the flexibility of initial dispersal of juveniles from the nursery and annual migration of adults to the nursery explains a large amount of dental distribution variability. Our framework predicts dispersal strategies of an extant sand tiger population, and supports nurseries as important components of sand tiger life history in both extant and Eocene populations. These results suggest nursery protection may be vital for shark conservation with increasing anthropogenic impacts and climate change.


Assuntos
Tubarões , Animais , Efeitos Antropogênicos , Tamanho Corporal , Demografia
5.
J Anat ; 240(6): 1095-1126, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34927245

RESUMO

Every night the greatest migration on Earth starts in the deep pelagic oceans where organisms move up to the meso- and epipelagic to find food and return to the deeper zones during the day. One of the dominant fish taxa undertaking vertical migrations are the dragonfishes (Stomiiformes). However, the functional aspects of locomotion and the architecture of the musculotendinous system (MTS) in these fishes have never been examined. In general, the MTS is organized in segmented blocks of specific three-dimensional 'W-shaped' foldings, the myomeres, separated by thin sheets of connective tissue, the myosepta. Within a myoseptum characteristic intermuscular bones or tendons may be developed. Together with the fins, the MTS forms the functional unit for locomotion in fishes. For this study, microdissections of cleared and double stained specimens of seven stomiiform species (Astronesthes sp., Chauliodus sloani, Malacosteus australis, Eustomias simplex, Polymetme sp., Sigmops elongatus, Argyropelecus affinis) were conducted to investigate their MTS. Soft tissue was investigated non-invasively in E. schmidti using a micro-CT scan of one specimen stained with iodine. Additionally, classical histological serial sections were consulted. The investigated stomiiforms are characterized by the absence of anterior cones in the anteriormost myosepta. These cones are developed in myosepta at the level of the dorsal fin and elongate gradually in more posterior myosepta. In all but one investigated stomiiform taxon the horizontal septum is reduced. The amount of connective tissue in the myosepta is very low anteriorly, but increases gradually with body length. Red musculature overlies laterally the white musculature and exhibits strong tendons in each myomere within the muscle bundles dorsal and ventral to the horizontal midline. The amount of red musculature increases immensely towards the caudal fin. The elongated lateral tendons of the posterior body segments attach in a highly complex pattern on the caudal-fin rays, which indicates that the posterior most myosepta are equipped for a multisegmental force transmission towards the caudal fin. This unique anatomical condition might be essential for steady swimming during diel vertical migrations, when prey is rarely available.


Assuntos
Peixes , Tendões , Animais , Tecido Conjuntivo , Peixes/fisiologia , Músculo Esquelético/fisiologia , Natação/fisiologia , Tendões/fisiologia
6.
J Anat ; 241(2): 372-392, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35428996

RESUMO

The lifelong tooth replacement in elasmobranch fishes (sharks, rays and skates) has led to the assemblage of a great number of teeth from fossil and extant species, rendering tooth morphology an important character for taxonomic descriptions, analysing phylogenetic interrelationships and deciphering their evolutionary history (e.g. origination, divergence, extinction). Heterodonty (exhibition of different tooth morphologies) occurs in most elasmobranch species and has proven to be one of the main challenges for these analyses. Although numerous shark species are discovered and described every year, detailed descriptions of tooth morphologies and heterodonty patterns are lacking or are only insufficiently known for most species. Here, we use landmark-based 2D geometric morphometrics on teeth of the tiger shark Galeocerdo cuvier to analyse and describe dental heterodonties among four different ontogenetic stages ranging from embryo to adult. Our results reveal rather gradual and subtle ontogenetic shape changes, mostly characterized by increasing size and complexity of the teeth. We furthermore provide the first comprehensive description of embryonic dental morphologies in tiger sharks. Also, tooth shapes of tiger sharks in different ontogenetic stages are re-assessed and depicted in detail. Finally, multiple cases of tooth file reversal are described. This study, therefore, contributes to our knowledge of dental traits across ontogeny in the extant tiger shark G. cuvier and provides a baseline for further morphological and genetic studies on the dental variation in sharks. Therefore, it has the potential to assist elucidating the underlying developmental and evolutionary processes behind the vast dental diversity observed in elasmobranch fishes today and in deep time.


Assuntos
Tubarões , Rajidae , Animais , Dentição , Fósseis , Filogenia , Tubarões/anatomia & histologia
7.
Front Zool ; 19(1): 7, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-35123488

RESUMO

BACKGROUND: The onset of morphological differences between related groups can be tracked at early stages during embryological development. This is expressed in functional traits that start with minor variations, but eventually diverge to defined specific morphologies. Several processes during this period, like proliferation, remodelling, and apoptosis for instance, can account for the variability observed between related groups. Morphological divergence through development is often associated with the hourglass model, in which early stages display higher variability and reach a conserved point with reduced variability from which divergence occurs again to the final phenotype. RESULTS: Here we explored the patterns of developmental shape changes in the lower jaw of two shark species, the bamboo shark (Chiloscyllium punctatum) and the catshark (Scyliorhinus canicula). These two species present marked differences in their foraging behaviour, which is reflected in their adult jaw morphology. By tracing the developmental sequence of the cartilage condensation, we identified the onset of cartilage for both species at around stage 31. Other structures that developed later without a noticeable anlage were the labial cartilages, which appear at around stage 33. We observed that the lower jaw displays striking differences in shape from the earliest moments, without any overlap in shape through the compared stages. CONCLUSIONS: The differences observed are also reflected in the functional variation in feeding mechanism between both species. Likewise, the trajectory analysis shows that the main differences are in the magnitude of the shape change through time. Both species follow a unique trajectory, which is explained by the timing between stages.

8.
J Vertebr Paleontol ; 42(2)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37564697

RESUMO

A new extinct sclerorhynchoid sawfish, Ptychotrygon ameghinorum sp. nov., is presented here based on abundant isolated teeth and some dermal denticles, which were recovered from the Mata Amarilla Formation, belonging to the lower Upper Cretaceous of the Santa Cruz Province in the Austral Basin of Patagonia, Argentina. This new species is the first Ptychotrygon occurrence in the southern hemisphere, which so far only has been reported from northern hemisphere deposits (Europe, North Africa, and North America). The presence of P. ameghinorum sp. nov. in these southern high-latitude deposits of Patagonia, Argentina, extends the geographic range of Ptychotrygon considerably southwards. This distribution pattern in the "middle" Cretaceous seems to correlate with the South Atlantic opening at the end of the Albian. The presence of lateral cephalic dermal denticles and the simultaneous absence of rostral denticles in the abundant fossil material support the view that Ptychotrygon did not develop such rostral structures. A reinvestigation of all known species assigned to Ptychotrygon reveals that P. ellae is a junior synonym of P. boothi, P. benningensis belongs to Texatrygon, P. rugosum belongs to Asflapristis, and P. clementsi represents an unidentifiable species (Ptychotrygon? sp.). The stratigraphic distribution demonstrates that Ptychotrygon might have originated in the Albian in south-western Europe and subsequently dispersed to obtain its widest distribution during the Cenomanian. In the Coniacian, a steep diversity decline is recognizable with a subsequent distribution shift from Europe to North America.

9.
J Afr Earth Sci ; 187: 104440, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35111270

RESUMO

The first articulated dentition of †Ptychodus from Africa is described herein. The specimen, likely coming from the Turonian of the Asfla area (Goulmima region, southeastern Morocco), exhibits a well-preserved lower dental plate of a second-level predator. A new species, †P. maghrebianus sp. nov., is erected herein based on this durophagous dentition characterised by imbricated cuspidate teeth. We employed for the first time in †Ptychodus multiple quantitative analyses and statistical parametric and non-parametric tests to process biometrical data taken from articulated, associated and isolated teeth. The quantitative approach (morphospace analysis) is exploited herein to support the traditional taxonomic identification (qualitative examination) of †P. maghrebianus sp. nov. and to separate it from the similar cuspidate species, †P. mortoni. Morphospace reconstructions confirm a marked lower dental heterodonty (mesio-distal patterns) for both species. The analysis protocol employed here also allows assigning indeterminate teeth as belonging to †P. mortoni. The reconstruction of the entire lower dental plate of †P. maghrebianus sp. nov. shows a cuspidate dentition probably able to reduce tooth damages when crushing thin-shelled prey. Both dental morphologies and tooth wear patterns suggest a peculiar food processing and a diet mainly consisting of bivalves, decapods and small fish for this durophagous predator. Trophic reconstructions of the Turonian ichthyofauna inhabiting the middle to outer ramp environment of the Asfla area emphasize that †P. maghrebianus sp. nov. and the batoid †Tingitanius most likely represented second-level consumers, whereas the sclerorhynchiforms †Asflapristis and †Ptychotrygon represented third-level predators. Top positions within the food web were occupied by larger predaceous elasmobranchs (e.g., †Squalicorax).

10.
Paleobiology ; 47(4): 574-590, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34866693

RESUMO

Sharks have a long and rich fossil record that consists predominantly of isolated teeth due to the poorly mineralized cartilaginous skeleton. Tiger sharks (Galeocerdo), which represent apex predators in modern oceans, have a known fossil record extending back into the early Eocene (ca. 56 Ma) and comprise 22 recognized extinct and one extant species to date. However, many of the fossil species remain dubious, resulting in a still unresolved evolutionary history of the tiger shark genus. Here, we present a revision of the fossil record of Galeocerdo by examining the morphological diversity and disparity of teeth in deep time. We use landmark-based geometric morphometrics to quantify tooth shapes and qualitative morphological characters for species discrimination. Employing this combined approach on fossil and extant tiger shark teeth, our results only support six species to represent valid taxa. Furthermore, the disparity analysis revealed that diversity and disparity are not implicitly correlated and that Galeocerdo retained a relatively high dental disparity since the Miocene despite its decrease from four to one species. With this study, we demonstrate that the combined approach of quantitative geometric morphometric techniques and qualitative morphological comparisons on isolated shark teeth provides a useful tool to distinguish between species with highly similar tooth morphologies.

11.
J Anat ; 236(5): 753-771, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31867732

RESUMO

During their evolutionary history, modern sharks developed different tooth mineralization patterns that resulted in very distinct histological patterns of the tooth crown (histotypes). To date, three different tooth histotypes have been distinguished: (i) orthodont teeth, which have a central hollow pulp cavity in the crown, encapsulated by a prominent layer of dentine (orthodentine); (ii) pseudoosteodont teeth, which have their pulp cavities secondarily replaced by a dentinal core of porous dentine (osteodentine), encased by orthodentine; and (iii) osteodont teeth, which lack orthodentine and the whole tooth crown of which consists of osteodentine. The aim of the present study was to trace evolutionary trends of tooth mineralization patterns in modern sharks and to find evidence for the presence of phylogenetic or functional signals. High resolution micro-computed tomography images were generated for the teeth of members of all nine extant shark orders and the putative stem group †Synechodontiformes, represented here by three taxa, to examine the tooth histology non-destructively. Pseudoosteodonty is the predominant state among modern sharks and represents unambiguously the plesiomorphic condition. Orthodonty evolved several times independently in modern sharks, while the osteodont tooth histotype is only developed in lamniform sharks. The two shark orders Heterodontiformes and Pristiophoriformes showed highly modified tooth histologies, with Pristiophorus exhibiting a histology only known from batomorphs (i.e. rays and skates), and Heterodontus showing a histological difference between anterior and posterior teeth, indicating a link between its tooth morphology, histology and durophagous lifestyle. The tooth histotype concept has proven to be a useful tool to reflect links between histology, function and its taxonomic value for distinct taxa; however, a high degree of variation, especially in the pseudoosteodont tooth histotype, demonstrates that the current histotype concept is too simplistic to fully resolve these relationships. The vascularization pattern of the dentine might offer new future research pathways for better understanding functional and phylogenetic signals in the tooth histology of modern sharks.


Assuntos
Evolução Biológica , Dentição , Tubarões/anatomia & histologia , Dente/anatomia & histologia , Animais , Filogenia , Dente/diagnóstico por imagem , Microtomografia por Raio-X
12.
J Fish Biol ; 97(1): 212-224, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32307702

RESUMO

Chlamydoselachus anguineus, Garman 1884, commonly called the frilled shark, is a deep-sea shark species occurring up to depths of 1300 m. It is assumed to represent an ancient morphotype of sharks (e.g., terminal mouth opening, more than five gill slits) and thus is often considered to represent plesiomorphic traits for sharks. Therefore, its early ontogenetic developmental traits are important for understanding the evolution of its particular phenotype. Here, we established six stages for prenatal embryos and used linear measurements and geometric morphometrics to analyse changes in shape and size as well as their timing during different embryonic stages. Our results show a change in head shape and a relocation of the mouth opening at a late stage of development. We also detected a negative allometric growth of the head and especially the eye compared to the rest of the body and a sexual dimorphism in total body length, which differs from the known data for adults. A multivariate analysis of covariance shows a significant interaction of shape related to the logarithm of centroid size and developmental stage. Geometric morphometrics results indicate that the head shape changes as a covariate of body size while not accounting for differences between sexes. The growth pattern of stages 32 and 33 indicates a shift in head shape, thus highlighting the moment in development when the jaws start to elongate anteriorly to finally achieve the adult condition of terminal mouth opening rather than retaining the early embryonic subterminal position as is typical for sharks. Thus, the antero-terminal mouth opening of the frilled shark has to be considered a derived feature.


Assuntos
Embrião não Mamífero/fisiologia , Desenvolvimento Embrionário , Tubarões/embriologia , Animais , Feminino , Masculino , Ovoviviparidade , Filogenia , Caracteres Sexuais , Tubarões/genética
13.
BMC Evol Biol ; 19(1): 238, 2019 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-31888446

RESUMO

BACKGROUND: Chondrichthyans represent a monophyletic group of crown group gnathostomes and are central to our understanding of vertebrate evolution. Like all vertebrates, cartilaginous fishes evolved concretions of material within their inner ears to aid with equilibrium and balance detection. Up to now, these materials have been identified as calcium carbonate-bearing otoconia, which are small bio-crystals consisting of an inorganic mineral and a protein, or otoconial masses (aggregations of otoconia bound by an organic matrix), being significantly different in morphology compared to the singular, polycrystalline otolith structures of bony fishes, which are solidified bio-crystals forming stony masses. Reinvestigation of the morphological and chemical properties of these chondrichthyan otoconia revises our understanding of otolith composition and has implications on the evolution of these characters in both the gnathostome crown group, and cartilaginous fishes in particular. RESULTS: Dissections of Amblyraja radiata, Potamotrygon leopoldi, and Scyliorhinus canicula revealed three pairs of singular polycrystalline otolith structures with a well-defined morphology within their inner ears, as observed in bony fishes. IR spectroscopy identified the material to be composed of carbonate/collagen-bearing apatite in all taxa. These findings contradict previous hypotheses suggesting these otoconial structures were composed of calcium carbonate in chondrichthyans. A phylogenetic mapping using 37 chondrichthyan taxa further showed that the acquisition of phosphatic otolith structures might be widespread within cartilaginous fishes. CONCLUSIONS: Differences in the size and shape of otoliths between taxa indicate a taxonomic signal within elasmobranchs. Otoliths made of carbonate/collagen-bearing apatite are reported for the first time in chondrichthyans. The intrinsic pathways to form singular, polycrystalline otoliths may represent the plesiomorphic condition for vertebrates but needs further testing. Likewise, the phosphatic composition of otoliths in early vertebrates such as cyclostomes and elasmobranchs is probably closely related to the lack of bony tissue in these groups, supporting a close relationship between skeletal tissue mineralization patterns and chemical otolith composition, underlined by physiological constraints.


Assuntos
Membrana dos Otólitos/anatomia & histologia , Animais , Carbonato de Cálcio/análise , Feminino , Peixes/anatomia & histologia , Peixes/classificação , Peixes/genética , Masculino , Minerais/metabolismo , Membrana dos Otólitos/química , Fosfatos/análise , Filogenia , Espectrofotometria Infravermelho , Vertebrados/anatomia & histologia , Vertebrados/genética
14.
J Vertebr Paleontol ; 39(2): e1614012, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31709027

RESUMO

The Upper Cretaceous (Cenomanian) limestone quarry of Haqel, Lebanon, is home to one of the largest diversities of fossil actinopterygians in the Mesozoic, particularly of pycnodontiform fishes. Here, we describe a pycnodontiform fish, Flagellipinna rhomboides, gen. et sp. nov., from this locality based on four specimens. It is considered a member of the derived family Pycnodontidae due to the presence of a postparietal process. This taxon is distinct from other pycnodontids due to its diamond-shaped body, whip-like dorsal fin, postcloacal scales with forward-pointing spines, and acute anterior profile with a concave slope, giving it a 'hunchback' appearance. The prognathous snout armed with molariform teeth suggests that this pycnodont preyed on a variety of shelled animals from crevices. The smallest specimen is distinct in that it has a larger orbit size, no spines on the contour scales, poorly ossified skull roof bones, a notochord partially covered by arcocentra, and lacks whip-like filament on the dorsal fin, which suggest that it is a juvenile/subadult. The differences between the juvenile/subadult and other larger specimens suggest a change in ecological niche occupation during ontogeny, going from a generalized forager that lived in complex, reef habitats to moving into deeper waters to feed from crevices on the reef edge. These findings provide a more complete picture of the possible life history strategies that pycnodontiforms may have used in order to exploit different resources throughout their lives.

15.
J Vertebr Paleontol ; 39(1): e1577251, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31709025

RESUMO

The presence of eagle rays of the genus Aetomylaeus in the Neogene of the Temperate Pacific coast of South America (TPSA) still is ambiguous, although the fossil record of elasmobranch fishes (sharks, rays, and skates) from this area is quite good. Here, we present the first unmistakable fossil remains of Aetomylaeus from the Neogene of the TPSA. The material comprises 13 dental plates from one site in Peru and six localities in Chile ranging in age from Miocene to Pliocene and was compared with dental plates of extant species. Our study reveals that the number of tooth rows and the shape of lateral teeth in extant species are seemingly very variable and need to be established before fossil specimens can be confidently identified. Consequently, we do not assign the fossil specimens from the Neogene of the TPSA to any species but leave them as Aetomylaeus. Moreover, we recognized that only the shape of medial teeth provides reliable diagnostic characters in our material, whereas the shape and number of lateral teeth are highly variable, similar to the condition seen in extant species.

16.
J Anat ; 232(6): 891-907, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29504120

RESUMO

A defining feature of dentitions in modern sharks and rays is the regulated pattern order that generates multiple replacement teeth. These are arranged in labio-lingual files of replacement teeth that form in sequential time order both along the jaw and within successively initiated teeth in a deep dental lamina. Two distinct adult dentitions have been described: alternate, in which timing of new teeth alternates between two adjacent files, each erupting separately, and the other arranged as single files, where teeth of each file are timed to erupt together, in some taxa facilitating similarly timed teeth to join to form a cutting blade. Both are dependent on spatiotemporally regulated formation of new teeth. The adult Angel shark Squatina (Squalomorphii) exemplifies a single file dentition, but we obtained new data on the developmental order of teeth in the files of Squatina embryos, showing alternate timing of tooth initiation. This was based on micro-CT scans revealing that the earliest mineralised teeth at the jaw margin and their replacements in file pairs (odd and even jaw positions) alternate in their initiation timing. Along with Squatina, new observations from other squalomorphs such as Hexanchus and Chlamydoselachus, together with representatives of the sister group Galeomorphii, have established that the alternate tooth pattern (initiation time and replacement order) characterises the embryonic dentition of extant sharks; however, this can change in adults. These character states were plotted onto a recent phylogeny, demonstrating that the Squalomorphii show considerable plasticity of dental development. We propose a developmental-evolutionary model to allow change from the alternate to a single file alignment of replacement teeth. This establishes new dental morphologies in adult sharks from inherited alternate order.


Assuntos
Tubarões/embriologia , Tubarões/crescimento & desenvolvimento , Dente/embriologia , Dente/crescimento & desenvolvimento , Animais , Evolução Biológica , Rajidae/embriologia , Rajidae/crescimento & desenvolvimento
17.
J Anat ; 230(2): 282-289, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27666133

RESUMO

Species of the extinct genus Hyaenodon were among the largest carnivorous mammals from the Late Eocene through Early Miocene in North America, Europe and Asia. The origin, phylogeny and palaeobiology of Hyaenodonta are still ambiguous. Most previous studies focused on teeth and dental function in these highly adapted species, which might be influenced by convergent morphologies. The anatomy of the bony labyrinth in vertebrates is generally quite conservative and, additionally, was used in functional-morphological studies. This study provides the first anatomical description of the bony labyrinth of the extinct European species Hyaenodon exiguus in comparison to selected extant carnivoran taxa discussed from a functional-morphological perspective. Hyaenodon exiguus may have occupied a hyaena-like dietary niche with a semi-arboreal lifestyle, based on the relative height, width and length of the semicircular canals of the inner ear. However, this contradicts previous functional-morphological studies focusing on the diameter of the canals, which presumably represent the signal of locomotion mode.


Assuntos
Evolução Biológica , Extinção Biológica , Paleontologia/métodos , Canais Semicirculares/anatomia & histologia , Canais Semicirculares/fisiologia , Animais , Mamíferos , Canais Semicirculares/diagnóstico por imagem , Microtomografia por Raio-X/métodos
18.
J Vertebr Paleontol ; 27(6): e1371724, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29551850

RESUMO

Seymour Island, Antarctic Peninsula, is known for its wealth of fossil remains. This island provides one of the richest fossiliferous Paleogene sequences in the world. Chondrichthyans seemingly dominate this Eocene marine fauna and offer a rare insight into high-latitude faunas during the Palaeogene. So far, only a few isolated teeth of carcharhinid sharks have been reported from Seymour Island. Bulk sampling in the well-exposed La Meseta and Submeseta formations yielded new and abundant chondrichthyan material, including numerous teeth of carcharhinid and triakid sharks. Here, we present a reevaluation of the previously described carcharhinid remains and a description of new taxa: Meridiogaleus cristatus, gen. et sp. nov., Kallodentis rythistemma, gen. et sp. nov., Abdounia richteri, sp. nov., and Abdounia mesetae, sp. nov. The carcharhiniforms Mustelus sp. and Galeorhinus sp. are reported based on rare material, whereas teeth previously assigned to Scoliodon represent a nomen dubium.

19.
J Vertebr Paleontol ; 37(4): e1344679, 2017 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-29170576

RESUMO

A new genus and species of pycnodontiform fishes, Grimmenodon aureum, from marginal marine, marine-brackish lower Toarcian (Harpoceras exaratum ammonite subzone) clay deposits of Grimmen in northeastern Germany is described. The single specimen represents a diagnostic left prearticular dentition characterized by unique tooth arrangement and ornamentation patterns. Grimmenodon aureum, gen. et sp. nov., is the second unambiguously identified pycnodontiform species from the Early Jurassic, in addition to Eomesodon liassicus from the early Lower Jurassic of western Europe. We also report an indeterminate pycnodontiform tooth crown from the upper Pliensbachian (Pleuroceras apyrenum ammonite subzone) of the same site. The material expands the Early Jurassic range of pycnodontiforms significantly northwards and confirms their presence before and immediately following the onset of the Toarcian Oceanic Anoxic Event (T-OAE) in the marginal marine ecosystems south of the Fennoscandian Shield. Moreover, the new records indicate that the Early Jurassic diversity of pycnodontiform fishes was greater than previously assumed and probably equaled that of the Late Triassic. Therefore, it is hypothesized that the Triassic-Jurassic mass extinction event did not affect pycnodontiform fishes significantly. Micro-computed tomography was used to study the internal anatomy of the prearticular of Grimmenodon aureum, gen. et sp. nov. Our results show that no replacement teeth were formed within the tooth-bearing bone but rather were added posteriorly to functional teeth. http://zoobank.org/urn:lsid:zoobank.org:pub:A56BDE9C-40C4-4CFA-9C2E-F5FA35A66F2 Citation for this article: Stumpf, S., J. Ansorge, C. Pfaff, and J. Kriwet. 2017. Early Jurassic diversification of pycnodontiform fishes (Actinopterygii, Neopterygii) after the end-Triassic extinction event: Evidence from a new genus and species, Grimmenodon aureum. Journal of Vertebrate Paleontology. DOI: 10.1080/02724634.2017.1344679.

20.
Bioessays ; 42(6): e2000045, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32319690

Assuntos
Dente , Animais , Vertebrados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA