Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 23(12): 5482-5489, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37295781

RESUMO

Current-induced spin-orbit torques (SOTs) enable fast and efficient manipulation of the magnetic state of magnetic tunnel junctions (MTJs), making them attractive for memory, in-memory computing, and logic applications. However, the requirement of the external magnetic field to achieve deterministic switching in perpendicularly magnetized SOT-MTJs limits its implementation for practical applications. Here, we introduce a field-free switching (FFS) solution for the SOT-MTJ device by shaping the SOT channel to create a "bend" in the SOT current. The resulting bend in the charge current creates a spatially nonuniform spin current, which translates into inhomogeneous SOT on an adjacent magnetic free layer enabling deterministic switching. We demonstrate FFS experimentally on scaled SOT-MTJs at nanosecond time scales. This proposed scheme is scalable, material-agnostic, and readily compatible with wafer-scale manufacturing, thus creating a pathway for developing purely current-driven SOT systems.

2.
Nat Mater ; 21(6): 640-646, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35552524

RESUMO

Ferrimagnetic alloys are model systems for understanding the ultrafast magnetization switching in materials with antiferromagnetically coupled sublattices. Here we investigate the dynamics of the rare-earth and transition-metal sublattices in ferrimagnetic GdFeCo and TbCo dots excited by spin-orbit torques with combined temporal, spatial and elemental resolution. We observe distinct switching regimes in which the magnetizations of the two sublattices either remain synchronized throughout the reversal process or switch following different trajectories in time and space. In the latter case, we observe a transient ferromagnetic state that lasts up to 2 ns. The asynchronous switching of the two magnetizations is ascribed to the master-agent dynamics induced by the spin-orbit torques on the transition-metal and rare-earth sublattices and their weak antiferromagnetic coupling, which depends sensitively on the alloy microstructure. Larger antiferromagnetic exchange leads to faster switching and shorter recovery of the magnetization after a current pulse. Our findings provide insight into the dynamics of ferrimagnets and the design of spintronic devices with fast and uniform switching.

3.
Nano Lett ; 18(8): 4871-4877, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-29924621

RESUMO

Electric control of magnetism is a prerequisite for efficient and low-power spintronic devices. More specifically, in heavy metal-ferromagnet-insulator heterostructures, voltage gating has been shown to locally and dynamically tune magnetic properties such as interface anisotropy and saturation magnetization. However, its effect on interfacial Dzyaloshinskii-Moriya Interaction (DMI), which is crucial for the stability of magnetic skyrmions, has been challenging to achieve and has not been reported yet for ultrathin films. Here, we demonstrate a 130% variation of DMI with electric field in Ta/FeCoB/TaO x trilayer through Brillouin Light Spectroscopy (BLS). Using polar magneto-optical Kerr-effect microscopy, we further show a monotonic variation of DMI and skyrmionic bubble size with electric field with an unprecedented efficiency. We anticipate through our observations that a sign reversal of DMI with an electric field is possible, leading to a chirality switch. This dynamic manipulation of DMI establishes an additional degree of control to engineer programmable skyrmion-based memory or logic devices.

4.
Phys Rev Lett ; 120(22): 227204, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29906179

RESUMO

Magnetic domain walls are objects whose dynamics is inseparably connected to their structure. In this Letter, we investigate magnetic bilayers, which are engineered such that a coupled pair of domain walls, one in each layer, is stabilized by a cooperation of Dzyaloshinskii-Moriya interaction and flux-closing mechanism. The dipolar field mediating the interaction between the two domain walls links not only their position but also their structure. We show that this link has a direct impact on their magnetic-field-induced dynamics. We demonstrate that in such a system the coupling leads to an increased domain wall velocity with respect to single domain walls. Since the domain wall dynamics is observed in a precessional regime, the dynamics involves the synchronization between the two walls to preserve the flux closure during motion. Properties of these coupled oscillating walls can be tuned by an additional in-plane magnetic field enabling a rich variety of states, from perfect synchronization to complete detuning.

5.
Nat Nanotechnol ; 15(2): 111-117, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31988509

RESUMO

Current-induced spin-transfer torques (STT) and spin-orbit torques (SOT) enable the electrical switching of magnetic tunnel junctions (MTJs) in non-volatile magnetic random access memories. To develop faster memory devices, an improvement in the timescales that underlie the current-driven magnetization dynamics is required. Here we report all-electrical time-resolved measurements of magnetization reversal driven by SOT in a three-terminal MTJ device. Single-shot measurements of the MTJ resistance during current injection reveal that SOT switching involves a stochastic two-step process that consists of a domain nucleation time and propagation time, which have different genesis, timescales and statistical distributions compared to STT switching. We further show that the combination of SOT, STT and the voltage control of magnetic anisotropy leads to reproducible subnanosecond switching with the spread of the cumulative switching time smaller than 0.2 ns. Our measurements unravel the combined impact of SOT, STT and the voltage control of magnetic anisotropy in determining the switching speed and efficiency of MTJ devices.

6.
Rev Sci Instrum ; 87(5): 053704, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27250432

RESUMO

We report on the development of a high-resolution scanning magnetometer, which fully exploits the vectorial nature of the magneto-optical Kerr effect. The three-dimensional nature of magnetization is at the basis of many micromagnetic phenomena and from these data, we can fully characterize magnetization processes of nanostructures in static and dynamic regimes. Our scanning Kerr magnetometer uses a high numerical aperture microscope objective where the incident light beam can be deterministically deviated from the objective symmetry axis, therefore, both in-plane (via the longitudinal Kerr effect) and out-of-plane (via the polar Kerr effect) components of the magnetization vector may be detected. These components are then separated by exploiting the symmetries of the polar and longitudinal Kerr effects. From four consecutive measurements, we are able to directly obtain the three orthogonal components of the magnetization vector with a resolution of 600 nm. Performance of the apparatus is demonstrated by a measurement of 3D magnetization vector maps showing out-of-plane domains and in-plane domain walls in an yttrium-iron-garnet film and on a study of magnetization reversal in a 4-µm-wide magnetic disk.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA