Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
N Engl J Med ; 384(10): 924-935, 2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33704937

RESUMO

BACKGROUND: Genomic analysis is essential for risk stratification in patients with acute myeloid leukemia (AML) or myelodysplastic syndromes (MDS). Whole-genome sequencing is a potential replacement for conventional cytogenetic and sequencing approaches, but its accuracy, feasibility, and clinical utility have not been demonstrated. METHODS: We used a streamlined whole-genome sequencing approach to obtain genomic profiles for 263 patients with myeloid cancers, including 235 patients who had undergone successful cytogenetic analysis. We adapted sample preparation, sequencing, and analysis to detect mutations for risk stratification using existing European Leukemia Network (ELN) guidelines and to minimize turnaround time. We analyzed the performance of whole-genome sequencing by comparing our results with findings from cytogenetic analysis and targeted sequencing. RESULTS: Whole-genome sequencing detected all 40 recurrent translocations and 91 copy-number alterations that had been identified by cytogenetic analysis. In addition, we identified new clinically reportable genomic events in 40 of 235 patients (17.0%). Prospective sequencing of samples obtained from 117 consecutive patients was performed in a median of 5 days and provided new genetic information in 29 patients (24.8%), which changed the risk category for 19 patients (16.2%). Standard AML risk groups, as defined by sequencing results instead of cytogenetic analysis, correlated with clinical outcomes. Whole-genome sequencing was also used to stratify patients who had inconclusive results by cytogenetic analysis into risk groups in which clinical outcomes were measurably different. CONCLUSIONS: In our study, we found that whole-genome sequencing provided rapid and accurate genomic profiling in patients with AML or MDS. Such sequencing also provided a greater diagnostic yield than conventional cytogenetic analysis and more efficient risk stratification on the basis of standard risk categories. (Funded by the Siteman Cancer Research Fund and others.).


Assuntos
Análise Citogenética , Leucemia Mieloide Aguda/genética , Síndromes Mielodisplásicas/genética , Sequenciamento Completo do Genoma , Estudos de Viabilidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos de Riscos Proporcionais , Análise de Sobrevida , Sequenciamento Completo do Genoma/métodos
2.
PLoS Genet ; 5(11): e1000728, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19936048

RESUMO

Most of our understanding of plant genome structure and evolution has come from the careful annotation of small (e.g., 100 kb) sequenced genomic regions or from automated annotation of complete genome sequences. Here, we sequenced and carefully annotated a contiguous 22 Mb region of maize chromosome 4 using an improved pseudomolecule for annotation. The sequence segment was comprehensively ordered, oriented, and confirmed using the maize optical map. Nearly 84% of the sequence is composed of transposable elements (TEs) that are mostly nested within each other, of which most families are low-copy. We identified 544 gene models using multiple levels of evidence, as well as five miRNA genes. Gene fragments, many captured by TEs, are prevalent within this region. Elimination of gene redundancy from a tetraploid maize ancestor that originated a few million years ago is responsible in this region for most disruptions of synteny with sorghum and rice. Consistent with other sub-genomic analyses in maize, small RNA mapping showed that many small RNAs match TEs and that most TEs match small RNAs. These results, performed on approximately 1% of the maize genome, demonstrate the feasibility of refining the B73 RefGen_v1 genome assembly by incorporating optical map, high-resolution genetic map, and comparative genomic data sets. Such improvements, along with those of gene and repeat annotation, will serve to promote future functional genomic and phylogenomic research in maize and other grasses.


Assuntos
Pareamento de Bases/genética , Genoma de Planta/genética , Zea mays/genética , Sequência de Bases , Cromossomos de Plantas/genética , Elementos de DNA Transponíveis/genética , Evolução Molecular , Duplicação Gênica , Rearranjo Gênico/genética , Genes de Plantas , Loci Gênicos/genética , Dados de Sequência Molecular , Mutação/genética , Fases de Leitura Aberta/genética , Oryza/genética , Mapeamento Físico do Cromossomo , RNA de Plantas/genética , Homologia de Sequência do Ácido Nucleico , Sorghum/genética , Sintenia/genética
3.
Nature ; 434(7034): 724-31, 2005 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-15815621

RESUMO

Human chromosome 2 is unique to the human lineage in being the product of a head-to-head fusion of two intermediate-sized ancestral chromosomes. Chromosome 4 has received attention primarily related to the search for the Huntington's disease gene, but also for genes associated with Wolf-Hirschhorn syndrome, polycystic kidney disease and a form of muscular dystrophy. Here we present approximately 237 million base pairs of sequence for chromosome 2, and 186 million base pairs for chromosome 4, representing more than 99.6% of their euchromatic sequences. Our initial analyses have identified 1,346 protein-coding genes and 1,239 pseudogenes on chromosome 2, and 796 protein-coding genes and 778 pseudogenes on chromosome 4. Extensive analyses confirm the underlying construction of the sequence, and expand our understanding of the structure and evolution of mammalian chromosomes, including gene deserts, segmental duplications and highly variant regions.


Assuntos
Cromossomos Humanos Par 2/genética , Cromossomos Humanos Par 4/genética , Animais , Composição de Bases , Sequência de Bases , Centrômero/genética , Sequência Conservada/genética , Ilhas de CpG/genética , Eucromatina/genética , Etiquetas de Sequências Expressas , Duplicação Gênica , Variação Genética/genética , Genômica , Humanos , Dados de Sequência Molecular , Mapeamento Físico do Cromossomo , Polimorfismo Genético/genética , Primatas/genética , Proteínas/genética , Pseudogenes/genética , RNA Mensageiro/análise , RNA Mensageiro/genética , RNA não Traduzido/análise , RNA não Traduzido/genética , Recombinação Genética/genética , Análise de Sequência de DNA
4.
Science ; 326(5956): 1112-5, 2009 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-19965430

RESUMO

We report an improved draft nucleotide sequence of the 2.3-gigabase genome of maize, an important crop plant and model for biological research. Over 32,000 genes were predicted, of which 99.8% were placed on reference chromosomes. Nearly 85% of the genome is composed of hundreds of families of transposable elements, dispersed nonuniformly across the genome. These were responsible for the capture and amplification of numerous gene fragments and affect the composition, sizes, and positions of centromeres. We also report on the correlation of methylation-poor regions with Mu transposon insertions and recombination, and copy number variants with insertions and/or deletions, as well as how uneven gene losses between duplicated regions were involved in returning an ancient allotetraploid to a genetically diploid state. These analyses inform and set the stage for further investigations to improve our understanding of the domestication and agricultural improvements of maize.


Assuntos
Variação Genética , Genoma de Planta , Análise de Sequência de DNA , Zea mays/genética , Sequência de Bases , Centrômero/genética , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Produtos Agrícolas/genética , Variações do Número de Cópias de DNA , Metilação de DNA , Elementos de DNA Transponíveis , DNA de Plantas/genética , Genes de Plantas , Endogamia , MicroRNAs/genética , Dados de Sequência Molecular , Ploidias , RNA de Plantas/genética , Recombinação Genética , Retroelementos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA