Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Infect Immun ; 82(1): 253-64, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24166953

RESUMO

Nuclear receptor Nur77 (NR4A1, TR3, or NGFI-B) has been shown to play an anti-inflammatory role in macrophages, which have a crucial function in defense against peritonitis. The function of Nur77 in Escherichia coli-induced peritoneal sepsis has not yet been investigated. Wild-type and Nur77-knockout mice were inoculated with E. coli, and bacterial outgrowth, cell recruitment, cytokine profiles, and tissue damage were investigated. We found only a minor transient decrease in bacterial loads in lung and liver of Nur77-knockout compared to wild-type mice at 14 h postinfection, yet no changes were found in the peritoneal lavage fluid or blood. No differences in inflammatory cytokine levels or neutrophil/macrophage numbers were observed, and bacterial loads were equal in wild-type and Nur77-knockout mice at 20 h postinfection in all body compartments tested. Also, isolated peritoneal macrophages did not show any differences in cytokine expression patterns in response to E. coli. In endothelial cells, Nur77 strongly downregulated both protein and mRNA expression of claudin-5, VE-cadherin, occludin, ZO-1, and ß-catenin, and accordingly, these genes were upregulated in lungs of Nur77-deficient mice. Functional permeability tests pointed toward a strong role for Nur77 in endothelial barrier function. Indeed, tissue damage in E. coli-induced peritonitis was notably modulated by Nur77; liver necrosis and plasma aspartate aminotransferase (ASAT)/alanine aminotransferase (ALAT) levels were lower in Nur77-knockout mice. These data suggest that Nur77 does not play a role in the host response to E. coli in the peritoneal and blood compartments. However, Nur77 does modulate bacterial influx into the organs via increased vascular permeability, thereby aggravating distant organ damage.


Assuntos
Infecções por Escherichia coli/metabolismo , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/fisiologia , Periodontite/microbiologia , Animais , Carga Bacteriana , Citocinas/metabolismo , Modelos Animais de Doenças , Infecções por Escherichia coli/patologia , Fígado/citologia , Fígado/microbiologia , Pulmão/citologia , Pulmão/microbiologia , Macrófagos/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neutrófilos/citologia , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/deficiência , Periodontite/metabolismo , Periodontite/patologia , Cavidade Peritoneal/microbiologia
2.
Cell Commun Signal ; 12: 77, 2014 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-25481771

RESUMO

BACKGROUND: IRAK-M is an inhibitor of Toll-like receptor signaling that acts by re-directing IRAK-4 activity to TAK1 independent NF-κB activation and by inhibition of IRAK-1/IRAK-2 activity. IRAK-M is expressed in monocytes/macrophages and lung epithelial cells. Lack of IRAK-M in mice greatly improves the resistance to nosocomial pneumonia and lung tumors, which entices IRAK-M as a potential therapeutic target. IRAK-M consists of an N-terminal death domain (DD), a dysfunctional kinase domain and unstructured C-terminal domain. Little is known however on IRAK-M's structure-function relationships. RESULTS: Since death domains provide the important interactions of IRAK-1, IRAK-2 and IRAK-4 molecules, we generated a 3D structure model of the human IRAK-M-DD (residues C5-G119) to guide mutagenesis studies and predict protein-protein interaction points. First we identified the DD residues involved in the endogenous capacity of IRAK-M to activate NF-κB that is displayed upon overexpression in 293T cells. W74 and R97, at distinct interfaces of the IRAK-M-DD, were crucial for this endogenous NF-κB activating capacity, as well as the C-terminal domain (S445-E596) of IRAK-M. Resulting anti-inflammatory A20 and pro-inflammatory IL-8 transcription in 293T cells was W74 dependent, while IL-8 protein expression was dependent on R97 and the TRAF6 binding motif at P478. The IRAK-M-DD W74 and R97 binding interfaces are predicted to interact with opposite sides of IRAK-4-DD's. Secondly we identified DD residues important for the inhibitory action of IRAK-M by stable overexpression of mutants in THP-1 macrophages and H292 lung epithelial cells. IRAK-M inhibited TLR2/4-mediated cytokine production in macrophages in a manner that is largely dependent on W74. R97 was not involved in inhibition of TNF production but was engaged in IL-6 down-regulation by IRAK-M. Protein-interactive residues D19-A23, located in between W74 and R97, were also observed to be crucial for inhibition of TLR2/4 mediated cytokine induction in macrophages. Remarkably, IRAK-M inhibited TLR5 mediated IL-8 production by lung epithelial cells independent of W74 and R97, but dependent on D19-A23 and R70, two surface-exposed regions that harbor predicted IRAK-2-DD interaction points of IRAK-M. CONCLUSION: IRAK-M employs alternate residues of its DD to inhibit the different inflammatory mediators induced by varying TLRs and cells.


Assuntos
Quinases Associadas a Receptores de Interleucina-1/química , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Modelos Moleculares , Linhagem Celular , Proteínas de Ligação a DNA/genética , Humanos , Quinases Associadas a Receptores de Interleucina-1/genética , Interleucina-6/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , NF-kappa B/metabolismo , Proteínas Nucleares/genética , Domínios e Motivos de Interação entre Proteínas , RNA Mensageiro/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas , Proteínas Supressoras da Sinalização de Citocina/genética , Proteína 3 Induzida por Fator de Necrose Tumoral alfa , Fator de Necrose Tumoral alfa/metabolismo
3.
Front Mol Biosci ; 10: 1265455, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38268724

RESUMO

The anti-inflammatory interleukin-1 receptor associated kinase-M (IRAK-M) is a negative regulator of MyD88/IRAK-4/IRAK-1 signaling. However, IRAK-M has also been reported to activate NF-κB through the MyD88/IRAK-4/IRAK-M myddosome in a MEKK-3 dependent manner. Here we provide support that IRAK-M uses three surfaces of its Death Domain (DD) to activate NF-κB downstream of MyD88/IRAK-4/IRAK-M. Surface 1, with central residue Trp74, binds to MyD88/IRAK-4. Surface 2, with central Lys60, associates with other IRAK-M DDs to form an IRAK-M homotetramer under the MyD88/IRAK-4 scaffold. Surface 3; with central residue Arg97 is located on the opposite side of Trp74 in the IRAK-M DD tetramer, lacks any interaction points with the MyD88/IRAK-4 complex. Although the IRAK-M DD residue Arg97 is not directly involved in the association with MyD88/IRAK-4, Arg97 was responsible for 50% of the NF-κB activation though the MyD88/IRAK-4/IRAK-M myddosome. Arg97 was also found to be pivotal for IRAK-M's interaction with IRAK-1, and important for IRAK-M's interaction with TRAF6. Residue Arg97 was responsible for 50% of the NF-κB generated by MyD88/IRAK-4/IRAK-M myddosome in IRAK-1/MEKK3 double knockout cells. By structural modeling we found that the IRAK-M tetramer surface around Arg97 has excellent properties that allow formation of an IRAK-M homo-octamer. This model explains why mutation of Arg97 results in an IRAK-M molecule with increased inhibitory properties: it still binds to myddosome, competing with myddosome IRAK-1 binding, while resulting in less NF-κB formation. The findings further identify the structure-function properties of IRAK-M, which is a potential therapeutic target in inflammatory disease.

4.
J Biol Chem ; 286(42): 36603-18, 2011 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-21690093

RESUMO

In a mouse model of Escherichia coli sepsis characterized by a primary peritoneal infection with 10(4) E. coli and a gradually growing bacterial load, we here show that the early cytokine response and antibacterial defense are dominated by TLR4 via a cooperative action of MyD88 and Trif. Although MyD88(-/-) mice succumbed earlier than WT mice in this E. coli peritonitis model, Trif(-/-) mice displayed a small but significant survival advantage. Despite a large early deficit in antimicrobial defense, TLR4(-/-) mice showed an unaltered survival with normal neutrophil attraction to the peritoneal cavity and normal or even elevated late cytokine release. TLR2 compensated for the lack of TLR4 because TLR2(-/-)/TLR4(-/-) mice did show decreased neutrophil attraction and increased mortality compared with WT mice. Nearly normal early peritoneal TNFα production and lack of early counterregulating systemic levels of the chemoattractant KC were associated with normal peritoneal neutrophil attraction in TLR4(-/-) mice. Late stage increased TNF, IL-1ß, IFN-ß, and typical IFN-γ production in TLR4(-/-) mice prompted us to evaluate expression of the negative feedback regulator SOCS-1. Lack of early hepatic SOCS-1 expression in TLR4(-/-) mice explained the late innate production of IFN-γ by the liver in TLR4(-/-) mice in this low dose E. coli peritonitis model. In contrast, early TLR4-induced IFN-γ production is described as a hallmark in high dose E. coli peritonitis models. The present study displays how the kinetics of pro- and anti-inflammatory mechanisms are regulated by TLRs during peritonitis by a gradually growing E. coli load and how these kinetics may affect outcome.


Assuntos
Infecções por Escherichia coli/imunologia , Escherichia coli , Peritonite/imunologia , Transdução de Sinais/imunologia , Receptor 2 Toll-Like/imunologia , Receptor 4 Toll-Like/imunologia , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/imunologia , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Citocinas/genética , Citocinas/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Infecções por Escherichia coli/genética , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Camundongos , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/imunologia , Fator 88 de Diferenciação Mieloide/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Peritonite/genética , Peritonite/metabolismo , Peritonite/microbiologia , Transdução de Sinais/genética , Proteína 1 Supressora da Sinalização de Citocina , Proteínas Supressoras da Sinalização de Citocina/genética , Proteínas Supressoras da Sinalização de Citocina/imunologia , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
5.
J Thromb Haemost ; 20(2): 328-338, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34773381

RESUMO

OBJECTIVE: Plasma thrombin generation (TG) provides important information on coagulation status; however, current TG output parameters do not predict major bleeding of patients on anticoagulants. We recently reported that factor V (FV) activation by factor X (FX)a contributes importantly to the initiation phase of TG. Here we investigated how this pathway varies in the normal population and whether FXa-mediated activation of FV is associated with major bleeding in patients on anticoagulant therapy. APPROACH: We employed TIX-5, a specific inhibitor of FV activation by FXa, to estimate the contribution of FXa-mediated FV activation to tissue factor (TF)-initiated TG. RESULTS: We show that the contribution of this pathway to plasma TG varies considerably in the normal population, as measured by the time needed to form the first traces of thrombin (TG lag time; mean prolongation by TIX-5 40%, range 0%-116%). Comparing patients on vitamin K antagonists (VKA) of the BLEED study (263 patients with and 538 patients without major bleeding), showed a marked prolongation in the median TG lag time in the presence of TIX-5 in cases (12.83 versus 11.00 minutes, P = 0.0030), while the TG lag time without TIX-5 only showed a minor although significant difference (5.83 vs. 5.67 minutes, P = 0.0198). The TIX-5 sensitivity (lag time + TIX-5/lag time + vehicle) in the upper quartile was associated with a 1.62-fold (95% confidence interval 1.04-2.52) increased risk of major bleeding compared to the lowest quartile. CONCLUSION: A greater dependence on FXa-mediated activation of FV of TG is associated with increased risk of major bleeding during VKA therapy.


Assuntos
Fator V , Fator Xa , Anticoagulantes/efeitos adversos , Testes de Coagulação Sanguínea , Fator V/metabolismo , Fator Xa/metabolismo , Hemorragia/induzido quimicamente , Humanos
6.
J Thromb Haemost ; 19(7): 1697-1708, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33829620

RESUMO

BACKGROUND: The prothrombinase complex consists of factors Xa (FXa) and Va (FVa) on an anionic phospholipid surface and converts prothrombin into thrombin. Both coagulation factors require activation before complex assembly. We recently identified TIX-5, a unique anticoagulant tick protein that specifically inhibits FXa-mediated activation of FV. Because TIX-5 inhibited thrombin generation in blood plasma, it was concluded that FV activation by FXa contributes importantly to coagulation. OBJECTIVE: We aimed to unravel the structure-function relationships of TIX-5. METHOD: We used a structure model generated based on homology with the allergen Der F7. RESULTS: Tick inhibitor of factor Xa toward FV was predicted to consist of a single rod formed by several beta sheets wrapped around a central C-terminal alpha helix. By mutagenesis we could show that two hydrophobic loops at one end of the rod mediate the phospholipid binding of TIX-5. On the other end of the rod an FV interaction region was identified on one side, whereas on the other side an EGK sequence was identified that could potentially form a pseudosubstrate of FXa. All three interaction sites were important for the anticoagulant properties of TIX-5 in a tissue factor-initiated thrombin generation assay as well as in the inhibition of FV activation by FXa in a purified system. CONCLUSION: The structure-function properties of TIX-5 are in perfect agreement with a protein that inhibits the FXa-mediated activation on a phospholipid surface. The present elucidation of the mechanism of action of TIX-5 will aid in deciphering the processes involved in the initiation phase of blood coagulation.


Assuntos
Anticoagulantes , Inibidores do Fator Xa , Coagulação Sanguínea , Fator V , Fator Va , Fator Xa , Inibidores do Fator Xa/farmacologia , Humanos , Protrombina , Trombina , Tromboplastina
7.
Eur J Pharmacol ; 633(1-3): 71-7, 2010 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-20132812

RESUMO

Inflammatory bowel disease is characterized by chronic inflammation of the intestine and is accompanied by damage of the epithelial lining and by undesired immune responses towards enteric bacteria. It has been demonstrated that intestinal alkaline phosphatase (iAP) protects against the induction of inflammation, possibly due to dephosphorylation of lipopolysaccharide (LPS). The present study investigated the therapeutic potential of iAP in intestinal inflammation and epithelial damage. Intestinal epithelial damage was induced in C57BL/6 mice using detran sulfate sodium (DSS) and iAP was administered 4days after initial DSS exposure. Loss in body weight was significantly less in iAP-treated mice and accompanied with reduced colon damage (determined by combination of crypt loss, loss of goblet cells, oedema and infiltrations of neutrophils). Treatment with iAP was more effective in case of severe inflammation compared to situations of mild to moderate inflammation. Rectal administration of LPS into a moderate inflamed colon did not aggravate inflammation. Furthermore, soluble iAP did not lower LPS-induced nuclear factor-kappaB activation in epithelial cells in vitro but induction of cellular AP expression by butyrate resulted in decreased LPS response. In conclusion, the present study shows that oral iAP administration has beneficial effects in situations of severe intestinal epithelial damage, whereas in moderate inflammation endogenous iAP may be sufficient to counteract disease-aggravating effects of LPS. An approach including iAP treatment holds a therapeutic promise in case of severe inflammatory bowel disease.


Assuntos
Fosfatase Alcalina/uso terapêutico , Doenças Inflamatórias Intestinais/tratamento farmacológico , Mucosa Intestinal/efeitos dos fármacos , Animais , Butiratos/farmacologia , Linhagem Celular Transformada , Células Cultivadas , Quimiocinas/metabolismo , Sulfato de Dextrana , Modelos Animais de Doenças , Feminino , Doenças Inflamatórias Intestinais/induzido quimicamente , Doenças Inflamatórias Intestinais/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Peroxidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA