RESUMO
Trees are unique in terms of development, sustainability and longevity. Some species have a record lifespan in the living world, reaching several millennia. The aim of this review is to summarize the available data on the genetic and epigenetic mechanisms of longevity in forest trees. In this review, we have focused on the genetic aspects of longevity of a few well-studied forest tree species, such as Quercus robur, Ginkgo biloba, Ficus benghalensis and F. religiosa, Populus, Welwitschia and Dracaena, as well as on interspecific genetic traits associated with plant longevity. A key trait associated with plant longevity is the enhanced immune defense, with the increase in gene families such as RLK, RLP and NLR in Quercus robur, the expansion of the CC-NBS-LRR disease resistance families in Ficus species and the steady expression of R-genes in Ginkgo biloba. A high copy number ratio of the PARP1 family genes involved in DNA repair and defense response was found in Pseudotsuga menziesii, Pinus sylvestris and Malus domestica. An increase in the number of copies of the epigenetic regulators BRU1/TSK/MGO3 (maintenance of meristems and genome integrity) and SDE3 (antiviral protection) was also found in long-lived trees. CHG methylation gradually declines in the DAL 1 gene in Pinus tabuliformis, a conservative age biomarker in conifers, as the age increases. It was shown in Larix kaempferi that grafting, cutting and pruning change the expression of age-related genes and rejuvenate plants. Thus, the main genetic and epigenetic mechanisms of longevity in forest trees were considered, among which there are both general and individual processes.
Assuntos
Pinus , Traqueófitas , Árvores/metabolismo , Longevidade/genética , FlorestasRESUMO
Forest trees growing in high altitude conditions offer a convenient model for studying adaptation processes. They are subject to a whole range of adverse factors that are likely to cause local adaptation and related genetic changes. Siberian larch (Larix sibirica Ledeb.), whose distribution covers different altitudes, makes it possible to directly compare lowland with highland populations. This paper presents for the first time the results of studying the genetic differentiation of Siberian larch populations, presumably associated with adaptation to the altitudinal gradient of climatic conditions, based on a joint analysis of altitude and six other bioclimatic variables, together with a large number of genetic markers, single nucleotide polymorphisms (SNPs), obtained from double digest restriction-site-associated DNA sequencing (ddRADseq). In total, 25,143 SNPs were genotyped in 231 trees. In addition, a dataset of 761 supposedly selectively neutral SNPs was assembled by selecting SNPs located outside coding regions in the Siberian larch genome and mapped to different contigs. The analysis using four different methods (PCAdapt, LFMM, BayeScEnv and RDA) revealed 550 outlier SNPs, including 207 SNPs whose variation was significantly correlated with the variation of some of environmental factors and presumably associated with local adaptation, including 67 SNPs that correlated with altitude based on either LFMM or BayeScEnv and 23 SNPs based on both of them. Twenty SNPs were found in the coding regions of genes, and 16 of them represented non-synonymous nucleotide substitutions. They are located in genes involved in the processes of macromolecular cell metabolism and organic biosynthesis associated with reproduction and development, as well as organismal response to stress. Among these 20 SNPs, nine were possibly associated with altitude, but only one of them was identified as associated with altitude by all four methods used in the study, a nonsynonymous SNP in scaffold_31130 in position 28092, a gene encoding a cell membrane protein with uncertain function. Among the studied populations, at least two main groups (clusters), the Altai populations and all others, were significantly genetically different according to the admixture analysis based on any of the three SNP datasets as follows: 761 supposedly selectively neutral SNPs, all 25,143 SNPs and 550 adaptive SNPs. In general, according to the AMOVA results, genetic differentiation between transects or regions or between population samples was relatively low, although statistically significant, based on 761 neutral SNPs (FST = 0.036) and all 25,143 SNPs (FST = 0.017). Meanwhile, the differentiation based on 550 adaptive SNPs was much higher (FST = 0.218). The data showed a relatively weak but highly significant linear correlation between genetic and geographic distances (r = 0.206, p = 0.001).
Assuntos
Larix , Larix/genética , Altitude , Polimorfismo de Nucleotídeo Único , Deriva Genética , Adaptação Fisiológica/genética , Árvores , Genética PopulacionalRESUMO
BACKGROUND: Plant mitogenomes vary widely in size and genomic architecture. Although hundreds of plant mitogenomes of angiosperm species have already been sequence-characterized, only a few mitogenomes are available from gymnosperms. Silver fir (Abies alba) is an economically important gymnosperm species that is widely distributed in Europe and occupies a large range of environmental conditions. Reference sequences of the nuclear and chloroplast genome of A. alba are available, however, the mitogenome has not yet been assembled and studied. RESULTS: Here, we used paired-end Illumina short reads generated from a single haploid megagametophyte in combination with PacBio long reads from high molecular weight DNA of needles to assemble the first mitogenome sequence of A. alba. Assembly and scaffolding resulted in 11 mitogenome scaffolds, with the largest scaffold being 0.25 Mbp long. Two of the scaffolds displayed a potential circular structure supported by PCR. The total size of the A. alba mitogenome was estimated at 1.43 Mbp, similar to the size (1.33 Mbp) of a draft assembly of the Abies firma mitogenome. In total, 53 distinct genes of known function were annotated in the A. alba mitogenome, comprising 41 protein-coding genes, nine tRNA, and three rRNA genes. The proportion of highly repetitive elements (REs) was 0.168. The mitogenome seems to have a complex and dynamic structure featured by high combinatorial variation, which was specifically confirmed by PCR for the contig with the highest mapping coverage. Comparative analysis of all sequenced mitogenomes of gymnosperms revealed a moderate, but significant positive correlation between mitogenome size and proportion of REs. CONCLUSIONS: The A. alba mitogenome provides a basis for new comparative studies and will allow to answer important structural, phylogenetic and other evolutionary questions. Future long-read sequencing with higher coverage of the A. alba mitogenome will be the key to further resolve its physical structure. The observed positive correlation between mitogenome size and proportion of REs will be further validated once available mitogenomes of gymnosperms would become more numerous. To test whether a higher proportion of REs in a mitogenome leads to an increased recombination and higher structural complexity and variability is a prospective avenue for future research.
Assuntos
Abies , Genoma de Cloroplastos , Genoma Mitocondrial , Traqueófitas , Genoma Mitocondrial/genética , Filogenia , Estudos ProspectivosRESUMO
Globally, Eucalyptus plantations occupy 22 million ha area and is one of the preferred hardwood species due to their short rotation, rapid growth, adaptability and wood properties. In this study, we present results of GWAS in parents and 100 hybrids of Eucalyptus tereticornis × E. grandis using 762 genes presumably involved in wood formation. Comparative analysis between parents predicted 32,202 polymorphic SNPs with high average read depth of 269-562× per individual per nucleotide. Seventeen wood related traits were phenotyped across three diverse environments and GWAS was conducted using 13,610 SNPs. A total of 45 SNP-trait associations were predicted across two locations. Seven large effect markers were identified which explained more than 80% of phenotypic variation for fibre area. This study has provided an array of candidate genes which may govern fibre morphology in this genus and has predicted potential SNPs which can guide future breeding programs in tropical Eucalyptus.
Assuntos
Eucalyptus , Eucalyptus/genética , Estudo de Associação Genômica Ampla , Fenótipo , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Madeira/genéticaRESUMO
The identification of promoters is an essential step in the genome annotation process, providing a framework for gene regulatory networks and their role in transcription regulation. Despite considerable advances in the high-throughput determination of transcription start sites (TSSs) and transcription factor binding sites (TFBSs), experimental methods are still time-consuming and expensive. Instead, several computational approaches have been developed to provide fast and reliable means for predicting the location of TSSs and regulatory motifs on a genome-wide scale. Numerous studies have been carried out on the regulatory elements of mammalian genomes, but plant promoters, especially in gymnosperms, have been left out of the limelight and, therefore, have been poorly investigated. The aim of this study was to enhance and expand the existing genome annotations using computational approaches for genome-wide prediction of TSSs in the four conifer species: loblolly pine, white spruce, Norway spruce, and Siberian larch. Our pipeline will be useful for TSS predictions in other genomes, especially for draft assemblies, where reliable TSS predictions are not usually available. We also explored some of the features of the nucleotide composition of the predicted promoters and compared the GC properties of conifer genes with model monocot and dicot plants. Here, we demonstrate that even incomplete genome assemblies and partial annotations can be a reliable starting point for TSS annotation. The results of the TSS prediction in four conifer species have been deposited in the Persephone genome browser, which allows smooth visualization and is optimized for large data sets. This work provides the initial basis for future experimental validation and the study of the regulatory regions to understand gene regulation in gymnosperms.
Assuntos
Genoma de Planta , Traqueófitas/genética , Sítio de Iniciação de Transcrição , Composição de Bases/genética , Sítios de Ligação , DNA de Plantas/genética , Éxons/genética , Anotação de Sequência Molecular , Motivos de Nucleotídeos/genética , Nucleotídeos/metabolismo , Fases de Leitura Aberta/genética , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismoRESUMO
In the course of evolution, both flowering plants and some gymnosperms have developed such an adaptation to winter and unfavorable living conditions as deciduousness. Of particular interest is Siberian larch (Larix sibirica Ledeb.), which is the only species in the pine family (Pinaceae) with a seasonal deciduousness. New generation sequencing technologies make it possible to study this phenomenon at the genomic level and to reveal the genetic mechanisms of leaf and needle aging in angiosperms and gymnosperms. Using a comparative analysis of the genomes of evergreen and deciduous trees, it was found that the genes that control EXORDIUM LIKE 2 (EXL2) and DORMANCY-ASSOCIATED PROTEIN 1 (DRM1) proteins are most represented in Siberian larch, while an excess of genes that control proteins acting as immune receptors were found in evergreens. Orthologs from the family of genes that control leucine-rich repeat receptor-like kinases (LRR-RLK) contributed mostly to the distinction between evergreens and deciduous plants.
Assuntos
Larix , Magnoliopsida , Traqueófitas , Florestas , Genômica , Larix/genética , Estações do Ano , Árvores/genéticaRESUMO
Plant cytoskeleton regulation has been studied using a new approach based on both (1) pharmacological analysis of tubulin and actin inhibitors and (2) mechanical stimulation achieved by using a slow-rotating (2 rpm) clinostat in combination with transcriptional analysis of genes encoding TUA6, ACT2, MAP65-1, CLASP, PLDδ, FH4 and FH1 proteins in Arabidopsis thaliana seedling roots. The obtained data suggest feedback between the organization of microtubule (MT) and actin filament (AF) networks and the expression of the ACT2, TUA6, MAP65-1, CLASP and FH1/FH4 genes. Different regulation of feedback between MT/AF organization and TUA6, ACT2, MAP65-1, CLASP, FH4 and FH1 gene expression was noted during slow clinorotation, possibly due to altered mechanical impact on the cortical cytoskeleton. For the first time, the expression of the tubulin-associated gene MAP65-1 was shown to be dependent upon the organization of AFs. TUA6, MAP65-1, CLASP, FH1 and FH4 likely participate in mechanical signal transduction. Our work demonstrated that slow clinorotation is able to cause mechanical stress.
RESUMO
New promising manganese-containing nanobiocomposites (NCs) based on natural polysaccharides, arabinogalactan (AG), arabinogalactan sulfate (AGS), and κ-carrageenan (κ-CG) were studied to develop novel multi-purpose trophic low-dose organomineral fertilizers. The general toxicological effects of manganese (Mn) on the vegetation of potatoes (Solanum tuberosum L.) was evaluated in this study. The essential physicochemical properties of this trace element in plant tissues, such as its elemental analysis and its spectroscopic parameters in electron paramagnetic resonance (EPR), were determined. Potato plants grown in an NC-containing medium demonstrated better biometric parameters than in the control medium, and no Mn accumulated in plant tissues. In addition, the synthesized NCs demonstrated a pronounced antibacterial effect against the phytopathogenic bacterium Clavibacter sepedonicus (Cms) and were proved to be safe for natural soil microflora.
Assuntos
Antibacterianos/farmacologia , Clavibacter/efeitos dos fármacos , Manganês/toxicidade , Micronutrientes/farmacologia , Nanocompostos/química , Polissacarídeos/química , Solanum tuberosum/crescimento & desenvolvimento , Carragenina/química , Galactanos/química , Micronutrientes/química , Solanum tuberosum/efeitos dos fármacos , Solanum tuberosum/metabolismo , Solanum tuberosum/microbiologia , Oligoelementos/farmacologiaRESUMO
The paper presents a study of the effect of chemically synthesized selenium nanocomposites (Se NCs) in natural polymer matrices arabinogalactan (AG) and starch (ST) on the viability of the potato ring rot pathogen Clavibacter sepedonicus (Cms), potato plants in vitro, and the soil bacterium Rhodococcus erythropolis. It was found that the studied Se NCs have an antibacterial effect against the phytopathogenic Cms, reducing its growth rate and ability to form biofilms. It was revealed that Se NC based on AG (Se/AG NC) stimulated the growth and development of potato plants in vitro as well as their root formation. At the same time, Se did not accumulate in potato tissues after the treatment of plants with Se NCs. The safety of the Se NCs was also confirmed by the absence of a negative effect on the growth and biofilm formation of the soil bacterium R. erythropolis. The obtained results indicate that Se NCs are promising environmentally safe agents for the protection and recovery of cultivated plants from phytopathogenic bacteria.
Assuntos
Clavibacter/efeitos dos fármacos , Nanocompostos/química , Selênio/farmacologia , Solanum tuberosum/microbiologia , Antibacterianos/química , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Clavibacter/patogenicidade , Galactanos/química , Microscopia Eletrônica de Transmissão , Doenças das Plantas/microbiologia , Rhodococcus/efeitos dos fármacos , Rhodococcus/fisiologia , Selênio/química , Selênio/farmacocinética , Microbiologia do Solo , Solanum tuberosum/efeitos dos fármacos , Solanum tuberosum/crescimento & desenvolvimento , Espectrometria por Raios X , Amido/químicaRESUMO
BACKGROUND: Massive forest decline has been observed almost everywhere as a result of negative anthropogenic and climatic effects, which can interact with pests, fungi and other phytopathogens and aggravate their effects. Climatic changes can weaken trees and make fungi, such as Armillaria more destructive. Armillaria borealis (Marxm. & Korhonen) is a fungus from the Physalacriaceae family (Basidiomycota) widely distributed in Eurasia, including Siberia and the Far East. Species from this genus cause the root white rot disease that weakens and often kills woody plants. However, little is known about ecological behavior and genetics of A. borealis. According to field research data, A. borealis is less pathogenic than A. ostoyae, and its aggressive behavior is quite rare. Mainly A. borealis behaves as a secondary pathogen killing trees already weakened by other factors. However, changing environment might cause unpredictable effects in fungus behavior. RESULTS: The de novo genome assembly and annotation were performed for the A. borealis species for the first time and presented in this study. The A. borealis genome assembly contained ~ 68 Mbp and was comparable with ~ 60 and ~ 79.5 Mbp for the A. ostoyae and A. mellea genomes, respectively. The N50 for contigs equaled 50,544 bp. Functional annotation analysis revealed 21,969 protein coding genes and provided data for further comparative analysis. Repetitive sequences were also identified. The main focus for further study and comparative analysis will be on the enzymes and regulatory factors associated with pathogenicity. CONCLUSIONS: Pathogenic fungi such as Armillaria are currently one of the main problems in forest conservation. A comprehensive study of these species and their pathogenicity is of great importance and needs good genomic resources. The assembled genome of A. borealis presented in this study is of sufficiently good quality for further detailed comparative study on the composition of enzymes in other Armillaria species. There is also a fundamental problem with the identification and classification of species of the Armillaria genus, where the study of repetitive sequences in the genomes of basidiomycetes and their comparative analysis will help us identify more accurately taxonomy of these species and reveal their evolutionary relationships.
Assuntos
Armillaria , Basidiomycota , Armillaria/genética , Plantas , SibériaRESUMO
BACKGROUND: Plant mitochondrial genomes (mitogenomes) can be structurally complex while their size can vary from ~ 222 Kbp in Brassica napus to 11.3 Mbp in Silene conica. To date, in comparison with the number of plant species, only a few plant mitogenomes have been sequenced and released, particularly for conifers (the Pinaceae family). Conifers cover an ancient group of land plants that includes about 600 species, and which are of great ecological and economical value. Among them, Siberian larch (Larix sibirica Ledeb.) represents one of the keystone species in Siberian boreal forests. Yet, despite its importance for evolutionary and population studies, the mitogenome of Siberian larch has not yet been assembled and studied. RESULTS: Two sources of DNA sequences were used to search for mitochondrial DNA (mtDNA) sequences: mtDNA enriched samples and nucleotide reads generated in the de novo whole genome sequencing project, respectively. The assembly of the Siberian larch mitogenome contained nine contigs, with the shortest and the largest contigs being 24,767 bp and 4,008,762 bp, respectively. The total size of the genome was estimated at 11.7 Mbp. In total, 40 protein-coding, 34 tRNA, and 3 rRNA genes and numerous repetitive elements (REs) were annotated in this mitogenome. In total, 864 C-to-U RNA editing sites were found for 38 out of 40 protein-coding genes. The immense size of this genome, currently the largest reported, can be partly explained by variable numbers of mobile genetic elements, and introns, but unlikely by plasmid-related sequences. We found few plasmid-like insertions representing only 0.11% of the entire Siberian larch mitogenome. CONCLUSIONS: Our study showed that the size of the Siberian larch mitogenome is much larger than in other so far studied Gymnosperms, and in the same range as for the annual flowering plant Silene conica (11.3 Mbp). Similar to other species, the Siberian larch mitogenome contains relatively few genes, and despite its huge size, the repeated and low complexity regions cover only 14.46% of the mitogenome sequence.
Assuntos
Tamanho do Genoma , Genoma Mitocondrial , Larix/genética , Mapeamento de Sequências Contíguas , Anotação de Sequência Molecular , Proteínas de Plantas/genética , RNA Ribossômico/genética , RNA de Transferência/genética , Sequências Repetitivas de Ácido NucleicoRESUMO
BACKGROUND: Recombinant carbohydrases genes are used to produce transgenic woody plants with improved phenotypic traits. However, cultivation of such plants in open field is challenging due to a number of problems. Therefore, additional research is needed to alleviate them. RESULTS: Results of successful cultivation of the transgenic aspens (Populus tremula) carrying the recombinant xyloglucanase gene (sp-Xeg) from Penicillium canescens in semi-natural conditions are reported in this paper for the first time. Change of carbohydrate composition of wood was observed in transgenic aspens carrying the sp-Xeg gene. The transformed transgenic line Xeg-2-1b demonstrated accelerated growth and increased content of cellulose in wood of trees growing in both greenhouse and outside in comparison with the control untransformed line Pt. The accelerated growth was observed also in the transgenic line Xeg-1-1c. Thicker cell-wall and longer xylem fiber were also observed in both these transgenic lines. Undescribed earlier considerable reduction in the wood decomposition rate of the transgenic aspen stems was also revealed for the transformed transgenic lines. The decomposition rate was approximately twice as lower for the transgenic line Xeg-2-3b in comparison with the control untransformed line Pt. CONCLUSION: A direct dependence of the phenotypic and biochemical traits on the expression of the recombinant gene sp-Xeg was demonstrated. The higher was the level of the sp-Xeg gene expression, the more pronounced were changes in the phenotypic and biochemical traits. All lines showed phenotypic changes in the leave traits. Our results showed that the plants carrying the recombinant sp-Xeg gene do not demonstrate a decrease in growth parameters in semi-natural conditions. In some transgenic lines, a change in the carbohydrate composition of the wood, an increase in the cell wall thickness, and a decrease in the rate of decomposition of wood were observed.
Assuntos
Glicosídeo Hidrolases/genética , Penicillium/genética , Populus/genética , Carboidratos/análise , Parede Celular/genética , Celulose/análise , Penicillium/enzimologia , Plantas Geneticamente Modificadas/genética , Populus/enzimologia , Populus/crescimento & desenvolvimento , Madeira/análise , Xilema/genéticaRESUMO
BACKGROUND: The main objectives of this study were sequencing, assembling, and annotation of chloroplast genome of one of the main Siberian boreal forest tree conifer species Siberian larch (Larix sibirica Ledeb.) and detection of polymorphic genetic markers - microsatellite loci or simple sequence repeats (SSRs) and single nucleotide polymorphisms (SNPs). RESULTS: We used the data of the whole genome sequencing of three Siberian larch trees from different regions - the Urals, Krasnoyarsk, and Khakassia, respectively. Sequence reads were obtained using the Illumina HiSeq2000 in the Laboratory of Forest Genomics at the Genome Research and Education Center of the Siberian Federal University. The assembling was done using the Bowtie2 mapping program and the SPAdes genomic assembler. The genome annotation was performed using the RAST service. We used the GMATo program for the SSRs search, and the Bowtie2 and UGENE programs for the SNPs detection. Length of the assembled chloroplast genome was 122,561 bp, which is similar to 122,474 bp in the closely related European larch (Larix decidua Mill.). As a result of annotation and comparison of the data with the existing data available only for three larch species - L. decidua, L. potaninii var. chinensis (complete genome 122,492 bp), and L. occidentalis (partial genome of 119,680 bp), we identified 110 genes, 34 of which represented tRNA, 4 rRNA, and 72 protein-coding genes. In total, 13 SNPs were detected; two of them were in the tRNA-Arg and Cell division protein FtsH genes, respectively. In addition, 23 SSR loci were identified. CONCLUSIONS: The complete chloroplast genome sequence was obtained for Siberian larch for the first time. The reference complete chloroplast genomes, such as one described here, would greatly help in the chloroplast resequencing and search for additional genetic markers using population samples. The results of this research will be useful for further phylogenetic and gene flow studies in conifers.
Assuntos
Cloroplastos/genética , Genoma de Cloroplastos , Larix/genética , Polimorfismo Genético , Mapeamento Cromossômico , Marcadores Genéticos , Repetições de Microssatélites/genética , Filogenia , Polimorfismo de Nucleotídeo Único/genéticaRESUMO
BACKGROUND: De novo assembling of large genomes, such as in conifers (~ 12-30 Gbp), which also consist of ~ 80% of repetitive DNA, is a very complex and computationally intense endeavor. One of the main problems in assembling such genomes lays in computing limitations of nucleotide sequence assembly programs (DNA assemblers). As a rule, modern assemblers are usually designed to assemble genomes with a length not exceeding the length of the human genome (3.24 Gbp). Most assemblers cannot handle the amount of input sequence data required to provide sufficient coverage needed for a high-quality assembly. RESULTS: An original stepwise method of de novo assembly by parts (sets), which allows to bypass the limitations of modern assemblers associated with a huge amount of data being processed, is presented in this paper. The results of numerical assembling experiments conducted using the model plant Arabidopsis thaliana, Prunus persica (peach) and four most popular assemblers, ABySS, SOAPdenovo, SPAdes, and CLC Assembly Cell, showed the validity and effectiveness of the proposed stepwise assembling method. CONCLUSION: Using the new stepwise de novo assembling method presented in the paper, the genome of Siberian larch, Larix sibirica Ledeb. (12.34 Gbp) was completely assembled de novo by the CLC Assembly Cell assembler. It is the first genome assembly for larch species in addition to only five other conifer genomes sequenced and assembled for Picea abies, Picea glauca, Pinus taeda, Pinus lambertiana, and Pseudotsuga menziesii var. menziesii.
Assuntos
Genoma de Planta , Larix/genética , Análise de Sequência de DNA/métodos , Arabidopsis/genética , Prunus/genética , Fatores de TempoRESUMO
BACKGROUND: Species in the genus Armillaria (fungi, basidiomycota) are well-known as saprophytes and pathogens on plants. Many of them cause white-rot root disease in diverse woody plants worldwide. Mitochondrial genomes (mitogenomes) are widely used in evolutionary and population studies, but despite the importance and wide distribution of Armillaria, the complete mitogenomes have not previously been reported for this genus. Meanwhile, the well-supported phylogeny of Armillaria species provides an excellent framework in which to study variation in mitogenomes and how they have evolved over time. RESULTS: Here we completely sequenced, assembled, and annotated the circular mitogenomes of four species: A. borealis, A. gallica, A. sinapina, and A. solidipes (116,443, 98,896, 103,563, and 122,167 bp, respectively). The variation in mitogenome size can be explained by variable numbers of mobile genetic elements, introns, and plasmid-related sequences. Most Armillaria introns contained open reading frames (ORFs) that are related to homing endonucleases of the LAGLIDADG and GIY-YIG families. Insertions of mobile elements were also evident as fragments of plasmid-related sequences in Armillaria mitogenomes. We also found several truncated gene duplications in all four mitogenomes. CONCLUSIONS: Our study showed that fungal mitogenomes have a high degree of variation in size, gene content, and genomic organization even among closely related species of Armillara. We suggest that mobile genetic elements invading introns and intergenic sequences in the Armillaria mitogenomes have played a significant role in shaping their genome structure. The mitogenome changes we describe here are consistent with widely accepted phylogenetic relationships among the four species.
Assuntos
Armillaria/classificação , Armillaria/genética , DNA Mitocondrial/genética , Genoma Mitocondrial , Sequências Repetitivas Dispersas , Proteínas Mitocondriais/genética , Sequenciamento de Nucleotídeos em Larga Escala , FilogeniaRESUMO
Greenhouse gas emission and global warming are likely to cause rapid climate change within the natural range of loblolly pine over the next few decades, thus bringing uncertainty to their adaptation to the environment. Here, we studied adaptive genetic variation of loblolly pine and correlated genetic variation with bioclimatic variables using multivariate modeling methods-Redundancy Analysis, Generalized Dissimilarity Modeling, and Gradient Forests. Studied trees (N = 299) were originally sampled from their native range across eight states on the east side of the Mississippi River. Genetic variation was calculated using a total of 44,317 single-nucleotide polymorphisms acquired by exome target sequencing. The fitted models were used to predict the adaptive genetic variation on a large spatial and temporal scale. We observed east-to-west spatial genetic variation across the range, which presented evidence of isolation by distance. Different key factors drive adaptation of loblolly pine from different geographical regions. Trees residing near the northeastern edge of the range, spanning across Delaware and Maryland and mountainous areas of Virginia, North Carolina, South Carolina, and northern Georgia, were identified to be most likely impacted by climate change based on the large difference in genetic composition under current and future climate conditions. This study provides new perspectives on adaptive genetic variation of loblolly pine in response to different climate scenarios, and the results can be used to target particular populations while developing adaptive forest management guidelines.
Assuntos
Adaptação Biológica , Variação Genética , Genética Populacional , Modelos Genéticos , Pinus taeda/genética , Meio Ambiente , Genoma de Planta , Genômica/métodos , Genótipo , GeografiaRESUMO
The use of natural products that can serve as natural herbicides and insecticides is a promising direction because of their greater safety for humans and environment. Secondary metabolites of plants that are toxic to plants and insects-allelochemicals-can be used as such products. Woody plants can produce allelochemicals, but they are studied much less than herbaceous species. Meanwhile, there is a problem of interaction of woody species with neighboring plants in the process of introduction or invasion, co-cultivation with agricultural crops (agroforestry) or in plantation forestry (multiclonal or multispecies plantations). This review describes woody plants with the greatest allelopathic potential, allelochemicals derived from them, and the prospects for their use as biopesticides. In addition, the achievement of and the prospects for the use of biotechnology methods in relation to the allelopathy of woody plants are presented and discussed.
Assuntos
Herbicidas/farmacologia , Árvores/efeitos dos fármacos , Produtos Biológicos/química , Plantas Geneticamente Modificadas/efeitos dos fármacosRESUMO
BACKGROUND: Identifying genetic variations that shape important complex traits is fundamental to the genetic improvement of important forest tree species, such as loblolly pine (Pinus taeda L.), which is one of the most commonly planted forest tree species in the southern U.S. Gene transcripts and metabolites are important regulatory intermediates that link genetic variations to higher-order complex traits such as wood development and drought response. A few prior studies have associated intermediate phenotypes including mRNA expression and metabolite levels with a limited number of molecular markers, but the identification of genetic variations that regulate intermediate phenotypes needs further investigation. RESULTS: We identified 1841 single nucleotide polymorphisms (SNPs) associated with 191 gene expression mRNA phenotypes and 524 SNPs associated with 53 metabolite level phenotypes using 2.8 million exome-derived SNPs. The identified SNPs reside in genes with a wide variety of functions. We further integrated the identified SNPs and the associated expressed genes and metabolites into networks. We described the SNP-SNP interactions that significantly impacted the gene transcript abundance and metabolite level in the networks. Key loci and genes in the wood development and drought response networks were identified and analyzed. CONCLUSIONS: This work provides new candidate genes for research on the genetic basis of gene expression and metabolism linked to wood development and drought response in loblolly pine and highlights the efficiency of using association-mapping-based networks to discover candidate genes with important roles in complex biological processes.
Assuntos
Regulação da Expressão Gênica de Plantas , Metaboloma , Pinus taeda/genética , Secas , Redes Reguladoras de Genes , Genótipo , Desequilíbrio de Ligação , Fenótipo , Pinus taeda/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
BACKGROUND: Gray whale, Eschrichtius robustus (E. robustus), is a single member of the family Eschrichtiidae, which is considered to be the most primitive in the class Cetacea. Gray whale is often described as a "living fossil". It is adapted to extreme marine conditions and has a high life expectancy (77 years). The assembly of a gray whale genome and transcriptome will allow to carry out further studies of whale evolution, longevity, and resistance to extreme environment. RESULTS: In this work, we report the first de novo assembly and primary analysis of the E. robustus genome and transcriptome based on kidney and liver samples. The presented draft genome assembly is complete by 55% in terms of a total genome length, but only by 24% in terms of the BUSCO complete gene groups, although 10,895 genes were identified. Transcriptome annotation and comparison with other whale species revealed robust expression of DNA repair and hypoxia-response genes, which is expected for whales. CONCLUSIONS: This preliminary study of the gray whale genome and transcriptome provides new data to better understand the whale evolution and the mechanisms of their adaptation to the hypoxic conditions.
Assuntos
Genoma , Transcriptoma/genética , Baleias/genética , Animais , Regulação da Expressão Gênica , Biblioteca Gênica , Anotação de Sequência Molecular , FilogeniaRESUMO
PREMISE OF THE STUDY: Untangling alternative historic dispersal pathways in long-lived tree species is critical to better understand how temperate tree species may respond to climatic change. However, disentangling these alternative pathways is often difficult. Emerging genomic technologies and landscape genetics techniques improve our ability to assess these pathways in natural systems. We address the question to what degree have microrefugial patches and long-distance dispersal been responsible for the colonization of mountain hemlock (Tsuga mertensiana) on the Alaskan Kenai Peninsula. METHODS: We used double-digest restriction-associated DNA sequencing (ddRADseq) to identify genetic variants across eight mountain hemlock sample sites on the Kenai Peninsula, Alaska. We assessed genetic diversity and linkage disequilibrium using landscape and population genetics approaches. Alternative historic dispersal pathways were assessed using discriminant analysis of principle components and electrical circuit theory. KEY RESULTS: A combination of decreasing diversity, high gene flow, and landscape connectivity indicates that mountain hemlock colonization on the Kenai Peninsula is the result of long-distance dispersal. We found that contemporary climate best explained gene flow patterns and that isolation by resistance was a better model explaining genetic variation than isolation by distance. CONCLUSIONS: Our findings support the conclusion that mountain hemlock colonization is the result of several long-distance dispersal events following Pleistocene glaciation. The high dispersal capability suggests that mountain hemlock may be able to respond to future climate change and expand its range as new habitat opens along its northern distribution.