Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(8): 5569-5579, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38353048

RESUMO

The classical view of the structural changes that occur at the ferroelectric transition in perovskite-structured systems, such as BaTiO3, is that polarization occurs due to the off-center displacement of the B-site cations. Here, we show that in the bismuth sodium titanate (BNT)-based composition 0.2(Ba0.4Sr0.6TiO3)-0.8(Bi0.5Na0.5TiO3), this model does not accurately describe the structural situation. Such BNT-based systems are of interest as lead-free alternatives to currently used materials in a variety of piezo-/ferroelectric applications. A combination of high-resolution powder neutron diffraction, impedance spectroscopy, and ab initio calculations reveals that Ti4+ contributes less than a third in magnitude to the overall polarization and that the displacements of the O2- ions and the A-site cations, particularly Bi3+, are very significant. The detailed examination of the ferroelectric transition in this system offers insights applicable to the understanding of such transitions in other ferroelectric perovskites, particularly those containing lone pair elements.

2.
Philos Trans A Math Phys Eng Sci ; 379(2211): 20190455, 2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34628945

RESUMO

Links between dynamical Frenkel defects and collective diffusion of fluorides in ß-PbF2 are explored using Born-Oppenheimer molecular dynamics. The calculated self-diffusion coefficient and ionic conductivity are 3.2 × 10-5 cm2 s-1 and 2.4 Ω-1 cm-1 at 1000 K in excellent agreement with pulsed field gradient and conductivity measurements. The calculated ratio of the tracer-diffusion coefficient and the conductivity-diffusion coefficient (the Haven ratio) is slightly less than unity (about 0.85), which in previous work has been interpreted as providing evidence against collective 'multi-ion' diffusion. By contrast, our molecular dynamics simulations show that fluoride diffusion is highly collective. Analysis of different mechanisms shows a preference for direct collinear 'kick-out' chains where a fluoride enters an occupied tetrahedral hole/cavity and pushes the resident fluoride out of its cavity. Jumps into an occupied cavity leave behind a vacancy, thereby forming dynamic Frenkel defects which trigger a chain of migrating fluorides assisted by local relaxations of the lead ions to accommodate these chains. The calculated lifetime of the Frenkel defects and the collective chains is approximately 1 ps in good agreement with that found from neutron diffraction. This article is part of the Theo Murphy meeting issue 'Understanding fast-ion conduction in solid electrolytes'.

3.
J Chem Phys ; 148(24): 241714, 2018 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-29960342

RESUMO

We demonstrate how machine-learning based interatomic potentials can be used to model guest atoms in host structures. Specifically, we generate Gaussian approximation potential (GAP) models for the interaction of lithium atoms with graphene, graphite, and disordered carbon nanostructures, based on reference density functional theory data. Rather than treating the full Li-C system, we demonstrate how the energy and force differences arising from Li intercalation can be modeled and then added to a (prexisting and unmodified) GAP model of pure elemental carbon. Furthermore, we show the benefit of using an explicit pair potential fit to capture "effective" Li-Li interactions and to improve the performance of the GAP model. This provides proof-of-concept for modeling guest atoms in host frameworks with machine-learning based potentials and in the longer run is promising for carrying out detailed atomistic studies of battery materials.

4.
Phys Chem Chem Phys ; 19(44): 30039-30047, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29094742

RESUMO

The fundamental origins surrounding the dynamics of disordered solids near their characteristic glass transitions continue to be fiercely debated, even though a vast number of materials can form amorphous solids, including small-molecule organic, inorganic, covalent, metallic, and even large biological systems. The glass-transition temperature, Tg, can be readily detected by a diverse set of techniques, but given that these measurement modalities probe vastly different processes, there has been significant debate regarding the question of why Tg can be detected across all of them. Here we show clear experimental and computational evidence in support of a theory that proposes that the shape and structure of the potential-energy surface (PES) is the fundamental factor underlying the glass-transition processes, regardless of the frequency that experimental methods probe. Whilst this has been proposed previously, we demonstrate, using ab initio molecular-dynamics (AIMD) simulations, that it is of critical importance to carefully consider the complete PES - both the intra-molecular and inter-molecular features - in order to fully understand the entire range of atomic-dynamical processes in disordered solids. Finally, we show that it is possible to utilise this dependence to directly manipulate and harness amorphous dynamics in order to control the behaviour of such solids by using high-powered terahertz pulses to induce crystallisation and preferential crystal-polymorph growth in glasses. Combined, these findings provide compelling evidence that the PES landscape, and the corresponding energy barriers, are the ultimate controlling feature behind the atomic and molecular dynamics of disordered solids, regardless of the frequency at which they occur.

5.
Chem Mater ; 35(1): 189-206, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36644215

RESUMO

The BIMEVOXes are among the best oxide ion conductors at low and intermediate temperatures. Their high conductivity is associated with local defect structure. In this work, the local structures of two BIMEVOX compositions, Bi2V0.9Ge0.1O5.45 and Bi2V0.95Sn0.05O5.475, are examined using total neutron and X-ray scattering methods, with both compositions exhibiting the ordered α-phase at 25 °C and the disordered γ-phase at 700 °C. While the diffraction data for the α-phase do not allow for the polar (C2) and nonpolar (C2/m) structures to be readily distinguished, measurements of dielectric permittivity suggest the α-phase is weakly ferroelectric in character, consistent with calculations of spontaneous polarization based on a combination of density functional calculations and machine learning methodology. Reverse Monte Carlo (RMC) analysis of total scattering data reveals Ge preferentially adopts tetrahedral geometry at both temperatures, while Sn is found to predominantly adopt octahedral coordination in the α-phase and tetrahedral coordination in the γ-phase. In all cases, V polyhedra are found to consist of tetrahedral, pentacoordinate, and octahedral geometries, as also predicted by the crystallographic analysis and confirmed by 51V solid state NMR spectroscopy. Although similar long-range structures are observed at room temperature, the oxide ion vacancy distributions were found to be quite different between the two studied compositions, with a nonrandom deficiency in vacancy pairs in the second-nearest shell along the ⟨100⟩ tetragonal direction for BIGEVOX10, compared with a long-distance (>8.0 Å) ordering of equatorial vacancies for BISNVOX05. This is attributed to the differences in the preferred coordination geometries of the substituent cations in the two systems. Impedance spectroscopy measurements reveal both compositions show high conductivity in the order of 10-1 S cm-1 at 600 °C.

6.
Sci Adv ; 7(26)2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34172443

RESUMO

Singlet exciton fission (SEF) is a key process for developing efficient optoelectronic devices. An aspect rarely probed directly, yet with tremendous impact on SEF properties, is the nuclear structure and dynamics involved in this process. Here, we directly observe the nuclear dynamics accompanying the SEF process in single crystal pentacene using femtosecond electron diffraction. The data reveal coherent atomic motions at 1 THz, incoherent motions, and an anisotropic lattice distortion representing the polaronic character of the triplet excitons. Combining molecular dynamics simulations, time-dependent density-functional theory, and experimental structure factor analysis, the coherent motions are identified as collective sliding motions of the pentacene molecules along their long axis. Such motions modify the excitonic coupling between adjacent molecules. Our findings reveal that long-range motions play a decisive part in the electronic decoupling of the electronically correlated triplet pairs and shed light on why SEF occurs on ultrafast time scales.

7.
J Phys Chem B ; 124(9): 1833-1838, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32017567

RESUMO

The nature and origin of the glass transition is one of the great unsolved problems of condensed-matter science. With the rapid increase of viscosity upon cooling the liquid near the glass-transition temperature, a range of dynamical motifs are observed, revealing the sheer complexity of interactions between the amorphous units. Yet, the causal link between those motifs and the solidification process remains unclear. Here, we apply a novel approach for exploring nontrivial interactions between structural units in d-sorbitol, a canonical example of a hydrogen-bonded organic glass, by introducing a dihedral-rearrangement-indicator analysis to shed light on relaxation processes and dynamical heterogeneity, which are known for their association with the stability of a glass. We find that both α- and ß-relaxation processes are governed by cooperative and heterogeneous changes in hydrogen-bond dynamics that can be described by spatial and dihedral-angle-rearrangement indicators. The methodology and findings are of general applicability to other glass-forming systems.

8.
RSC Adv ; 9(17): 9640-9653, 2019 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35520691

RESUMO

A detailed study of the defect structure in a di-substituted δ-Bi2O3 type phase, δ-Bi5PbY2O11.5, is presented. Using a combination of conventional Rietveld analysis of neutron diffraction data, reverse Monte Carlo (RMC) analysis of total neutron scattering data and ab initio molecular dynamics (MD) simulations, both average and local structures have been characterized. δ-Bi5PbY2O11.5 represents a model system for the highly conducting δ-Bi2O3 type phases, in which there is a higher nominal vacancy concentration than in the unsubstituted parent compound. Uniquely, the methodology developed in this study has afforded the opportunity to study both oxide-ion vacancy ordering as well as specific cation-cation interactions. Oxide-ion vacancies in this system have been found to show a preference for association with Pb2+ cations, with some evidence for clustering of these cations. The system shows a non-random distribution of vacancy pair alignments, with a preference for 〈100〉 ordering, the extent of which shows thermal variation. MD simulations indicate a predominance of oxide-ion jumps in the 〈100〉 direction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA