Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Phys Rev Lett ; 125(25): 254801, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33416365

RESUMO

We present an x-ray regenerative amplifier free-electron laser design capable of producing fully coherent hard x-ray pulses across a broad tuning range at a high steady state repetition rate. The scheme leverages a strong undulator taper and an apertured diamond output-coupling cavity crystal to produce both high peak and average spectral brightness radiation that is 2 to 3 orders of magnitude greater than conventional single-pass self-amplified spontaneous emission free-electron laser amplifiers. Refractive guiding in the postsaturation regime is found to play a key role in passively controlling the stored cavity power. The scheme is explored both analytically and numerically in the context of the Linac Coherent Light Source II High Energy upgrade.

2.
Phys Rev Lett ; 124(13): 134801, 2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32302180

RESUMO

Microbunching instability (MBI) driven by beam collective effects is known to be detrimental to high-brightness storage rings, linacs, and free-electron lasers (FELs). One known way to suppress this instability is to induce a small amount of energy spread to an electron beam by a laser heater. The distribution of the induced energy spread greatly affects MBI suppression and can be controlled by shaping the transverse profile of the heater laser. Here, we present the first experimental demonstration of effective MBI suppression using a LG_{01} transverse laser mode and compare the improved results with respect to traditional Gaussian transverse laser mode at the Linac Coherent Light Source. The effects on MBI suppression are characterized by multiple downstream measurements, including longitudinal phase space analysis and coherent radiation spectroscopy. We also discuss the role of LG_{01} shaping in soft x-ray self-seeded FEL emission, one of the most advanced operation modes of a FEL for which controlled suppression of MBI is critical.

3.
J Synchrotron Radiat ; 25(Pt 1): 85-90, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29271756

RESUMO

The Linac Coherent Light Source is upgrading its machine to high repetition rate and to extended ranges. Novel coatings, with limited surface oxidation, which are able to work at the carbon edge, are required. In addition, high-resolution soft X-ray monochromators become necessary. One of the big challenges is to design the mirror geometry and the grating profile to have high reflectivity (or efficiency) and at the same time survive the high peak energy of the free-electron laser pulses. For these reasons the experimental damage threshold, at 900 eV, of two platinum-coated gratings with different blazed angles has been investigated. The gratings were tested at 1° grazing incidence. To validate a model for which the damage threshold on the blaze grating can be estimated by calculating the damage threshold of a mirror with an angle of incidence identical to the angle of incidence on the grating plus the blaze angle, tests on Pt-coated substrates have also been performed. The results confirmed the prediction. Uncoated silicon, platinum and SiB3 (both deposited on a silicon substrate) were also investigated. In general, the measured damage threshold at grazing incidence is higher than that calculated under the assumption that there is no energy transport from the volume where the photons are absorbed. However, it was found that, for the case of the SiB3 coating, the grazing incidence condition did not increase the damage threshold, indicating that the energy transport away from the extinction volume is negligible.

4.
J Synchrotron Radiat ; 25(Pt 2): 354-360, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29488913

RESUMO

Performance tests of parabolic beryllium refractive lenses, considered as X-ray focusing elements in the future X-ray free-electron laser oscillator (XFELO), are reported. Single and double refractive lenses were subject to X-ray tests, which included: surface profile, transmissivity measurements, imaging capabilities and wavefront distortion with grating interferometry. Optical metrology revealed that surface profiles were close to the design specification in terms of the figure and roughness. The transmissivity of the lenses is >94% at 8 keV and >98% at 14.4 and 18 keV. These values are close to the theoretical values of ideal lenses. Images of the bending-magnet source obtained with the lenses were close to the expected ones and did not show any significant distortion. Grating interferometry revealed that the possible wavefront distortions produced by surface and bulk lens imperfections were on the level of ∼λ/60 for 8 keV photons. Thus the Be lenses can be succesfully used as focusing and beam collimating elements in the XFELO.

5.
Phys Rev Lett ; 120(26): 264801, 2018 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-30004769

RESUMO

We demonstrate a novel multistage amplification scheme for self-amplified spontaneous-emission free electron lasers for the production of few femtosecond pulses with very high power in the soft x-ray regime. The scheme uses the fresh-slice technique to produce an x-ray pulse on the bunch tail, subsequently amplified in downstream undulator sections by fresh electrons. With three-stages amplification, x-ray pulses with an energy of hundreds of microjoules are produced in few femtoseconds. For single-spike spectra x-ray pulses the pulse power is increased more than an order of magnitude compared to other techniques in the same wavelength range.

6.
J Chem Phys ; 149(23): 234707, 2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30579301

RESUMO

We report on atom-specific activation of CO oxidation on Ru(0001) via resonant X-ray excitation. We show that resonant 1s core-level excitation of atomically adsorbed oxygen in the co-adsorbed phase of CO and oxygen directly drives CO oxidation. We separate this direct resonant channel from indirectly driven oxidation via X-ray induced substrate heating. Based on density functional theory calculations, we identify the valence-excited state created by the Auger decay as the driving electronic state for direct CO oxidation. We utilized the fresh-slice multi-pulse mode at the Linac Coherent Light Source that provided time-overlapped and 30 fs delayed pairs of soft X-ray pulses and discuss the prospects of femtosecond X-ray pump X-ray spectroscopy probe, as well as X-ray two-pulse correlation measurements for fundamental investigations of chemical reactions via selective X-ray excitation.

7.
Nature ; 470(7332): 73-7, 2011 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-21293373

RESUMO

X-ray crystallography provides the vast majority of macromolecular structures, but the success of the method relies on growing crystals of sufficient size. In conventional measurements, the necessary increase in X-ray dose to record data from crystals that are too small leads to extensive damage before a diffraction signal can be recorded. It is particularly challenging to obtain large, well-diffracting crystals of membrane proteins, for which fewer than 300 unique structures have been determined despite their importance in all living cells. Here we present a method for structure determination where single-crystal X-ray diffraction 'snapshots' are collected from a fully hydrated stream of nanocrystals using femtosecond pulses from a hard-X-ray free-electron laser, the Linac Coherent Light Source. We prove this concept with nanocrystals of photosystem I, one of the largest membrane protein complexes. More than 3,000,000 diffraction patterns were collected in this study, and a three-dimensional data set was assembled from individual photosystem I nanocrystals (∼200 nm to 2 µm in size). We mitigate the problem of radiation damage in crystallography by using pulses briefer than the timescale of most damage processes. This offers a new approach to structure determination of macromolecules that do not yield crystals of sufficient size for studies using conventional radiation sources or are particularly sensitive to radiation damage.


Assuntos
Cristalografia por Raios X/métodos , Nanopartículas/química , Nanotecnologia/métodos , Complexo de Proteína do Fotossistema I/química , Cristalografia por Raios X/instrumentação , Lasers , Modelos Moleculares , Nanotecnologia/instrumentação , Conformação Proteica , Fatores de Tempo , Raios X
8.
Nature ; 470(7332): 78-81, 2011 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-21293374

RESUMO

X-ray lasers offer new capabilities in understanding the structure of biological systems, complex materials and matter under extreme conditions. Very short and extremely bright, coherent X-ray pulses can be used to outrun key damage processes and obtain a single diffraction pattern from a large macromolecule, a virus or a cell before the sample explodes and turns into plasma. The continuous diffraction pattern of non-crystalline objects permits oversampling and direct phase retrieval. Here we show that high-quality diffraction data can be obtained with a single X-ray pulse from a non-crystalline biological sample, a single mimivirus particle, which was injected into the pulsed beam of a hard-X-ray free-electron laser, the Linac Coherent Light Source. Calculations indicate that the energy deposited into the virus by the pulse heated the particle to over 100,000 K after the pulse had left the sample. The reconstructed exit wavefront (image) yielded 32-nm full-period resolution in a single exposure and showed no measurable damage. The reconstruction indicates inhomogeneous arrangement of dense material inside the virion. We expect that significantly higher resolutions will be achieved in such experiments with shorter and brighter photon pulses focused to a smaller area. The resolution in such experiments can be further extended for samples available in multiple identical copies.


Assuntos
Mimiviridae/química , Difração de Raios X/instrumentação , Difração de Raios X/métodos , Elétrons , Temperatura Alta , Lasers , Fótons , Fatores de Tempo , Raios X
9.
J Synchrotron Radiat ; 23(1): 21-8, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26698041

RESUMO

A sustained filamentation or density depression phenomenon in an argon gas attenuator servicing a high-repetition femtosecond X-ray free-electron laser has been studied using a finite-difference method applied to the thermal diffusion equation for an ideal gas. A steady-state solution was obtained by assuming continuous-wave input of an equivalent time-averaged beam power and that the pressure of the entire gas volume has reached equilibrium. Both radial and axial temperature/density gradients were found and describable as filamentation or density depression previously reported for a femtosecond optical laser of similar attributes. The effect exhibits complex dependence on the input power, the desired attenuation, and the geometries of the beam and the attenuator. Time-dependent simulations were carried out to further elucidate the evolution of the temperature/density gradients in between pulses, from which the actual attenuation received by any given pulse can be properly calculated.

10.
Opt Express ; 24(20): 22469-22480, 2016 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-27828320

RESUMO

X-ray free electron lasers (XFELs) enable unprecedented new ways to study the electronic structure and dynamics of transition metal systems. L-edge absorption spectroscopy is a powerful technique for such studies and the feasibility of this method at XFELs for solutions and solids has been demonstrated. However, the required x-ray bandwidth is an order of magnitude narrower than that of self-amplified spontaneous emission (SASE), and additional monochromatization is needed. Here we compare L-edge x-ray absorption spectroscopy (XAS) of a prototypical transition metal system based on monochromatizing the SASE radiation of the linac coherent light source (LCLS) with a new technique based on self-seeding of LCLS. We demonstrate how L-edge XAS can be performed using the self-seeding scheme without the need of an additional beam line monochromator. We show how the spectral shape and pulse energy depend on the undulator setup and how this affects the x-ray spectroscopy measurements.

11.
J Synchrotron Radiat ; 22(3): 492-7, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25931058

RESUMO

The Atomic, Molecular and Optical Science (AMO) instrument at the Linac Coherent Light Source (LCLS) provides a tight soft X-ray focus into one of three experimental endstations. The flexible instrument design is optimized for studying a wide variety of phenomena requiring peak intensity. There is a suite of spectrometers and two photon area detectors available. An optional mirror-based split-and-delay unit can be used for X-ray pump-probe experiments. Recent scientific highlights illustrate the imaging, time-resolved spectroscopy and high-power density capabilities of the AMO instrument.

12.
Opt Express ; 23(5): 5397-405, 2015 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-25836774

RESUMO

We investigated the experimental damage threshold of platinum coating on a silicon substrate illuminated by soft x-ray radiation at grazing incidence angle of 2 degrees. The coating was the same as the blazed grating used for the soft X-ray self-seeding optics of the Linac Coherent Light Source free electron laser. The irradiation condition was chosen such that the absorbed dose was similar to the maximum dose expected for the grating. The expected dose was simulated by solving the Helmholtz equation in non-homogenous media. The experiment was performed at 900 eV photon energy for both single pulse and multi-shot conditions. We have not observed single shot damage. This corresponds to a single shot damage threshold being higher than 3 J/cm(2). The multiple shot damage threshold measured for 10 shots and about 600 shots was determined to be 0.95 J/cm(2) and 0.75 J/cm(2) respectively. The damage threshold occurred at an instantaneous dose which is higher that the melt dose of platinum.

13.
Phys Rev Lett ; 114(9): 098102, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25793853

RESUMO

We present a proof-of-concept three-dimensional reconstruction of the giant mimivirus particle from experimentally measured diffraction patterns from an x-ray free-electron laser. Three-dimensional imaging requires the assembly of many two-dimensional patterns into an internally consistent Fourier volume. Since each particle is randomly oriented when exposed to the x-ray pulse, relative orientations have to be retrieved from the diffraction data alone. We achieve this with a modified version of the expand, maximize and compress algorithm and validate our result using new methods.


Assuntos
Imageamento Tridimensional/métodos , Mimiviridae/ultraestrutura , Difração de Raios X/métodos , Algoritmos , Elétrons , Lasers , Difração de Raios X/instrumentação
14.
Opt Express ; 21(22): 26363-75, 2013 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-24216859

RESUMO

We present an extended theoretical background of so-called fluence scan (f-scan or F-scan) method, which is frequently being used for offline characterization of focused short-wavelength (EUV, soft X-ray, and hard X-ray) laser beams [J. Chalupský et al., Opt. Express 18, 27836 (2010)]. The method exploits ablative imprints in various solids to visualize iso-fluence beam contours at different fluence and/or clip levels. An f-scan curve (clip level as a function of the corresponding iso-fluence contour area) can be generated for a general non-Gaussian beam. As shown in this paper, fluence scan encompasses important information about energy distribution within the beam profile, which may play an essential role in laser-matter interaction research employing intense non-ideal beams. Here we for the first time discuss fundamental properties of the f-scan function and its inverse counterpart (if-scan). Furthermore, we extensively elucidate how it is related to the effective beam area, energy distribution, and to the so called Liu's dependence [J. M. Liu, Opt. Lett. 7, 196 (1982)]. A new method of the effective area evaluation based on weighted inverse f-scan fit is introduced and applied to real data obtained at the SCSS (SPring-8 Compact SASE Source) facility.

15.
Opt Express ; 21(7): 8051-61, 2013 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-23571895

RESUMO

Focusing hard x-ray free-electron laser radiation with extremely high fluence sets stringent demands on the x-ray optics. Any material placed in an intense x-ray beam is at risk of being damaged. Therefore, it is crucial to find the damage thresholds for focusing optics. In this paper we report experimental results of exposing tungsten and diamond diffractive optics to a prefocused 8.2 keV free-electron laser beam in order to find damage threshold fluence levels. Tungsten nanostructures were damaged at fluence levels above 500 mJ/cm(2). The damage was of mechanical character, caused by thermal stress variations. Diamond nanostructures were affected at a fluence of 59 000 mJ/cm(2). For fluence levels above this, a significant graphitization process was initiated. Scanning Electron Microscopy (SEM) and µ-Raman analysis were used to analyze exposed nanostructures.


Assuntos
Diamante/química , Diamante/efeitos da radiação , Lasers , Lentes , Refratometria/instrumentação , Tungstênio/química , Tungstênio/efeitos da radiação , Desenho de Equipamento , Análise de Falha de Equipamento , Doses de Radiação , Raios X
16.
Opt Express ; 20(4): 4525-36, 2012 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-22418212

RESUMO

We present recent results on the inspection of a first diffraction-limited hard X-ray Kirkpatrick-Baez (KB) mirror pair for the Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS). The full KB system - mirrors and holders - was under inspection by use of high resolution slope measuring deflectometry. The tests confirmed that KB mirrors of 350mm aperture length characterized by an outstanding residual figure error of <1 nm rms has been realized. This corresponds to the residual figure slope error of about 0.05µrad rms, unprecedented on such long elliptical mirrors. Additional measurements show the clamping of the mirrors to be a critical step for the final - shape preserving installation of such outstanding optics.

17.
Opt Lett ; 37(24): 5073-5, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23258009

RESUMO

We present a spectrometer setup based on grating dispersion for hard x-ray free-electron lasers. This setup consists of a focusing spectrometer grating and a charge-integrating microstrip detector. Measurement results acquired at Linac Coherent Light Source are presented, demonstrating noninvasive monitoring of single-shot spectra with a resolution of 2.0×10(-4) ±0.3×10(-4) at photon energy of 6 keV with more than 95% transmission of the main beam.

18.
Opt Lett ; 37(15): 3033-5, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22859076

RESUMO

The interaction of free electron laser pulses with grating structure is investigated using 4.6±0.1 nm radiation at the FLASH facility in Hamburg. For fluences above 63.7±8.7 mJ/cm2, the interaction triggers a damage process starting at the edge of the grating structure as evidenced by optical and atomic force microscopy. Simulations based on solution of the Helmholtz equation demonstrate an enhancement of the electric field intensity distribution at the edge of the grating structure. A procedure is finally deduced to evaluate damage threshold.

19.
Acta Crystallogr A Found Adv ; 78(Pt 6): 465-472, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36318067

RESUMO

This paper describes how to efficiently solve time-dependent X-ray dynamic diffraction problems in distorted crystals with a fast Fourier transform based beam propagation method. Examples are given of using the technique to simulate the propagation of X-ray beams in deformed crystals in space and time domains relevant to the cavity-based X-ray free-electron lasers and X-ray free-electron laser self-seeding systems.

20.
Nat Commun ; 13(1): 7170, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36418902

RESUMO

The concomitant motion of electrons and nuclei on the femtosecond time scale marks the fate of chemical and biological processes. Here we demonstrate the ability to initiate and track the ultrafast electron rearrangement and chemical bond breaking site-specifically in real time for the carbon monoxide diatomic molecule. We employ a local resonant x-ray pump at the oxygen atom and probe the chemical shifts of the carbon core-electron binding energy. We observe charge redistribution accompanying core-excitation followed by Auger decay, eventually leading to dissociation and hole trapping at one site of the molecule. The presented technique is general in nature with sensitivity to chemical environment changes including transient electronic excited state dynamics. This work provides a route to investigate energy and charge transport processes in more complex systems by tracking selective chemical bond changes on their natural timescale.


Assuntos
Monóxido de Carbono , Diatomáceas , Humanos , Núcleo Celular , Aberrações Cromossômicas , Eletrônica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA