Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Prep Biochem Biotechnol ; 53(7): 773-785, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36369762

RESUMO

An immobilized enzyme could exhibit selectively modified physicochemical properties, and it might offer a better environment for the enzyme activity. In this study, the immobilization yield of crude Halomonas sp. lipase was optimized to improve its stability. Thanks to its high adsorption capacity, CaCO3 has been chosen as support for the immobilization process. Furthermore, response surface methodology (RSM) was used to determine optimal conditions for the immobilization of the bacterial lipase. Five tested factors (enzyme solution, support amount, time, temperature, and acetone volume) were optimized applying a central composite design of RSM. The maximum yield of lipase immobilization was improved to 96%. Furthermore, a biochemical characterization proved a significant improvement of the immobilized lipase stability. The immobilized enzyme is more stable at extreme pH values and high temperatures than the free one. We also tested the reusability of the immobilized lipase by evaluating the recovery of the support using simple filtration. Thanks to its high stability, the immobilized lipase was invested in an effective treatment of tuna wash processing wastewater. The oil biodegradation efficiency was established at 81.5% and was confirmed by Fourier transformation infrared spectrometry. Likewise, the biological oxygen demand values were reduced which makes a possible reduction of the wastewater pollution degree.


Assuntos
Enzimas Imobilizadas , Halomonas , Animais , Enzimas Imobilizadas/química , Estabilidade Enzimática , Halomonas/metabolismo , Águas Residuárias , Atum/metabolismo , Lipase/química , Temperatura , Concentração de Íons de Hidrogênio
2.
Environ Sci Pollut Res Int ; 27(11): 12755-12766, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32006338

RESUMO

Lipases are hydrolytic enzymes owing much importance in industrial applications. These enzyme-based detergents are ecofriendly and produce a wastewater with low level of COD (chemical oxygen demand). In the present work, a novel halophilous, thermoalkaline, and detergent-tolerant lipase produced by a newly isolated Aeribacillus pallidus strain VP3 was studied. Considerable interest has been given to this lipase by the improvement of its catalytic activity through the optimization of the pH, the (C/N) ratio, and the inoculum size, using the response surface methodology based on the Box-Behnken design of experiments. A total of 16 experiments were conducted, and the optimized pH, (C/N) ratio, and inoculum size were 10, 1, and 0.3, respectively. The results of the analysis of variance (ANOVA) test indicated that the established model was significant (p value < 0.05). The optimization of the production conditions leads to 2.83-fold of increase in the catalytic activity calculated as the ratio of the activity obtained after optimization (68 U) and the initial activity before optimization (24 U). All in all, the lipase of Aeribacillus pallidus could be considered as a potential candidate to be incorporated in detergent formulations since it shows a good stability towards detergents and wash performance.


Assuntos
Bacillaceae , Lipase , Detergentes , Hidrólise
3.
J Biochem ; 167(1): 89-99, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31599938

RESUMO

Treatment of oily wastewater is constantly a challenge; biological wastewater treatment is an effective, cheap and eco-friendly technology. A newly thermostable, haloalkaline, solvent tolerant and non-induced lipase from Aeribacillus pallidus designated as GPL was purified and characterized of biochemical and molecular study for apply in wastewater treatment. The GPL showed a maximum activity at 65°C and pH 10 after 22 h of incubation, with preference to TC4 substrates. Pure enzyme was picked up after one chromatographic step. It displayed an important resistance at high temperature, pH, NaCl, at the presence of detergents and organic solvents. In fact, GPL exhibited a prominent stability in wide range of organic solvents at 50% (v/v) concentration for 2 h of incubation. The efficiency of the GPL in oil wastewater hydrolysis was established at 50°C for 1 h, the oil removal efficiency was established at 96, 11% and the oil biodegradation was confirmed through fourier transform infrared (FT-IR) spectroscopy. The gene that codes for this lipase was cloned and sequenced and its open reading frame encoded 236 amino acid residues. The deduced amino acids sequence of the GPL shows an important level of identity with Geobacillus lipases.


Assuntos
Bacillaceae/enzimologia , Lipase/biossíntese , Óleos/metabolismo , Temperatura , Águas Residuárias/química , Concentração de Íons de Hidrogênio , Hidrólise , Lipase/genética , Lipase/isolamento & purificação , Óleos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA