Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 28(8)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37110689

RESUMO

As a vital parameter in living cells and tissues, the micro-environment is crucial for the living organisms. Significantly, organelles require proper micro-environment to achieve normal physiological processes, and the micro-environment in organelles can reflect the state of organelles in living cells. Moreover, some abnormal micro-environments in organelles are closely related to organelle dysfunction and disease development. So, visualizing and monitoring the variation of micro-environments in organelles is helpful for physiologists and pathologists to study the mechanisms of the relative diseases. Recently, a large variety of fluorescent probes was developed to study the micro-environments in living cells and tissues. However, the systematic and comprehensive reviews on the organelle micro-environment in living cells and tissues have rarely been published, which may hinder the research progress in the field of organic fluorescent probes. In this review, we will summarize the organic fluorescent probes for monitoring the microenvironment, such as viscosity, pH values, polarity, and temperature. Further, diverse organelles (mitochondria, lysosome, endoplasmic reticulum, cell membrane) about microenvironments will be displayed. In this process, the fluorescent probes about the "off-on" and ratiometric category (the diverse fluorescence emission) will be discussed. Moreover, the molecular designing, chemical synthesis, fluorescent mechanism, and the bio-applications of these organic fluorescent probes in cells and tissues will also be discussed. Significantly, the merits and defects of current microenvironment-sensitive probes are outlined and discussed, and the development tendency and challenges for this kind of probe are presented. In brief, this review mainly summarizes some typical examples and highlights the progress of organic fluorescent probes for monitoring micro-environments in living cells and tissues in recent research. We anticipate that this review will deepen the understanding of microenvironment in cells and tissues and facilitate the studies and development of physiology and pathology.


Assuntos
Corantes Fluorescentes , Mitocôndrias , Corantes Fluorescentes/química , Mitocôndrias/metabolismo , Lisossomos/metabolismo , Retículo Endoplasmático/metabolismo , Membrana Celular/metabolismo
2.
Anal Chim Acta ; 1302: 342506, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38580410

RESUMO

BACKGROUND: Mitophagy plays indispensable roles in maintaining intracellular homeostasis in most eukaryotic cells by selectively eliminating superfluous components or damaged organelles. Thus, the co-operation of mitochondrial probes and lysosomal probes was presented to directly monitor mitophagy in dual colors. Nowadays, most of the lysosomal probes are composed of groups sensitive to pH, such as morpholine, amine and other weak bases. However, the pH in lysosomes would fluctuate in the process of mitophagy, leading to the optical interference. Thus, it is crucial to develop a pH-insensitive probe to overcome this tough problem to achieve exquisite visualization of mitophagy. RESULTS: In this study, we rationally prepared a pH-independent lysosome probe to reduce the optical interference in mitophagy, and thus the process of mitophagy could be directly monitored in dual color through cooperation between IVDI and MTR, depending on Förster resonance energy transfer mechanism. IVDI shows remarkable fluorescence enhancement toward the increase of viscosity, and the fluorescence barely changes when pH varies. Due to the sensitivity to viscosity, the probe can visualize micro-viscosity alterations in lysosomes without washing procedures, and it showed better imaging properties than LTR. Thanks to the inertia of IVDI to pH, IVDI can exquisitely monitor mitophagy with MTR by FRET mechanism despite the changes of lysosomal pH in mitophagy, and the reduced fluorescence intensity ratio of green and red channels can indicate the occurrence of mitophagy. Based on the properties mentioned above, the real-time increase of micro-viscosity in lysosomes during mitophagy was exquisitely monitored through employing IVDI. SIGNIFICANCE AND NOVELTY: Compared with the lysosomal fluorescent probes sensitive to pH, the pH-inert probe could reduce the influence of pH variation during mitophagy to achieve exquisite visualization of mitophagy in real-time. Besides, the probe could monitor the increase of lysosomal micro-viscosity in mitophagy. So, the probe possesses tremendous potential in the visualization of dynamic changes related to lysosomes in various physiological processes.


Assuntos
Corantes Fluorescentes , Mitofagia , Humanos , Concentração de Íons de Hidrogênio , Viscosidade , Células HeLa , Corantes Fluorescentes/química , Lisossomos/química
3.
Nanoscale Res Lett ; 15(1): 213, 2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33180221

RESUMO

Perovskite solar cells are used in silicon-based tandem solar cells due to their tunable band gap, high absorption coefficient and low preparation cost. However, the relatively large optical refractive index of bottom silicon, in comparison with that of top perovskite absorber layers, results in significant reflection losses in two-terminal devices. Therefore, light management is crucial to improve photocurrent absorption in the Si bottom cell. In this paper, nanoholes array filled with TiO2 is introduced into bottom cells design. By finite-difference time-domain methods, the absorption efficiency and photocurrent density in the range of 300-1100 nm has been analyzed, and the structural parameters have been also optimized. Our calculations show the photocurrent density which tends to be saturated with the increase in the height of the nanoholes. The absorption enhancement modes of photons at different wavelengths have been analyzed intuitively by the distribution of electric field. These results enable a viable and convenient route toward high efficiency design of perovskite/Si tandem solar cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA