Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36835210

RESUMO

4-methylumbelliferone (4MU) has been suggested as a potential therapeutic agent for a wide range of neurological diseases. The current study aimed to evaluate the physiological changes and potential side effects after 10 weeks of 4MU treatment at a dose of 1.2 g/kg/day in healthy rats, and after 2 months of a wash-out period. Our findings revealed downregulation of hyaluronan (HA) and chondroitin sulphate proteoglycans throughout the body, significantly increased bile acids in blood samples in weeks 4 and 7 of the 4MU treatment, as well as increased blood sugars and proteins a few weeks after 4MU administration, and significantly increased interleukins IL10, IL12p70 and IFN gamma after 10 weeks of 4MU treatment. These effects, however, were reversed and no significant difference was observed between control treated and 4MU-treated animals after a 9-week wash-out period.


Assuntos
Ácido Hialurônico , Himecromona , Animais , Ratos , Ácido Hialurônico/metabolismo , Himecromona/efeitos adversos , Himecromona/uso terapêutico , Interleucina-12
2.
Cell Mol Life Sci ; 77(14): 2815-2838, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31583425

RESUMO

Biological effects of high fluence low-power (HFLP) lasers have been reported for some time, yet the molecular mechanisms procuring cellular responses remain obscure. A better understanding of the effects of HFLP lasers on living cells will be instrumental for the development of new experimental and therapeutic strategies. Therefore, we investigated sub-cellular mechanisms involved in the laser interaction with human hepatic cell lines. We show that mitochondria serve as sub-cellular "sensor" and "effector" of laser light non-specific interactions with cells. We demonstrated that despite blue and red laser irradiation results in similar apoptotic death, cellular signaling and kinetic of biochemical responses are distinct. Based on our data, we concluded that blue laser irradiation inhibited cytochrome c oxidase activity in electron transport chain of mitochondria. Contrary, red laser triggered cytochrome c oxidase excessive activation. Moreover, we showed that Bcl-2 protein inhibited laser-induced toxicity by stabilizing mitochondria membrane potential. Thus, cells that either overexpress or have elevated levels of Bcl-2 are protected from laser-induced cytotoxicity. Our findings reveal the mechanism how HFLP laser irradiation interfere with cell homeostasis and underscore that such laser irradiation permits remote control of mitochondrial function in the absence of chemical or biological agents.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/genética , Transporte de Elétrons/efeitos da radiação , Terapia com Luz de Baixa Intensidade , Fototerapia , Apoptose/efeitos da radiação , Sobrevivência Celular/genética , Sobrevivência Celular/efeitos da radiação , Transporte de Elétrons/genética , Regulação da Expressão Gênica/efeitos da radiação , Células Hep G2 , Humanos , Potencial da Membrana Mitocondrial/genética , Potencial da Membrana Mitocondrial/efeitos da radiação , Mitocôndrias/genética , Mitocôndrias/efeitos da radiação , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/efeitos da radiação , Oxirredução/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismo
3.
Neurochem Res ; 45(1): 171-179, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31028504

RESUMO

Spinal cord injury (SCI) is a serious trauma, which often results in a permanent loss of motor and sensory functions, pain and spasticity. Despite extensive research, there is currently no available therapy that would restore the lost functions after SCI in human patients. Advanced treatments use regenerative medicine or its combination with various interdisciplinary approaches such as tissue engineering or biophysical methods. This review summarizes and critically discusses the research from specific interdisciplinary fields in SCI treatment such as the development of biomaterials as scaffolds for tissue repair, and using a magnetic field for targeted cell delivery. We compare the treatment effects of synthetic non-degradable methacrylate-based hydrogels and biodegradable biological scaffolds based on extracellular matrix. The systems using magnetic fields for magnetically guided delivery of stem cells loaded with magnetic nanoparticles into the lesion site are then suggested and discussed.


Assuntos
Materiais Biocompatíveis/uso terapêutico , Magnetoterapia/métodos , Traumatismos da Medula Espinal/terapia , Transplante de Células-Tronco/métodos , Animais , Materiais Biocompatíveis/farmacologia , Humanos , Hidrogéis/uso terapêutico , Magnetoterapia/tendências , Regeneração Nervosa/efeitos dos fármacos , Regeneração Nervosa/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Transplante de Células-Tronco/tendências
4.
Neurochem Res ; 45(1): 159-170, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30945145

RESUMO

Superparamagnetic iron oxide nanoparticles (SPIOn) are widely used as a contrast agent for cell labeling. Macrophages are the first line of defense of organisms in contact with nanoparticles after their administration. In this study we investigated the effect of silica-coated nanoparticles (γ-Fe2O3-SiO2) with or without modification by an ascorbic acid (γ-Fe2O3-SiO2-ASA), which is meant to act as an antioxidative agent on rat peritoneal macrophages. Both types of nanoparticles were phagocytosed by macrophages in large amounts as confirmed by transmission electron microscopy and Prusian blue staining, however they did not substantially affect the viability of exposed cells in monitored intervals. We further explored cytotoxic effects related to oxidative stress, which is frequently documented in cells exposed to nanoparticles. Our analysis of double strand breaks (DSBs) marker γH2AX showed an increased number of DSBs in cells treated with nanoparticles. Nanoparticle exposure further revealed only slight changes in the expression of genes involved in oxidative stress response. Lipid peroxidation, another marker of oxidative stress, was not significantly affirmed after nanoparticle exposure. Our data indicate that the effect of both types of nanoparticles on cell viability, or biomolecules such as DNA or lipids, was similar; however the presence of ascorbic acid, either bound to the nanoparticles or added to the cultivation medium, worsened the negative effect of nanoparticles in various tests performed. The attachment of ascorbic acid on the surface of nanoparticles did not have a protective effect against induced cytotoxicity, as expected.


Assuntos
Ácido Ascórbico/metabolismo , Ácido Ascórbico/toxicidade , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/metabolismo , Nanopartículas de Magnetita/toxicidade , Animais , Antioxidantes/metabolismo , Antioxidantes/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Feminino , Ratos , Ratos Wistar
5.
Int J Mol Sci ; 21(17)2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32872159

RESUMO

The emerged field of non-thermal plasma (NTP) shows great potential in the alteration of cell redox status, which can be utilized as a promising therapeutic implication. In recent years, the NTP field considerably progresses in the modulation of immune cell function leading to promising in vivo results. In fact, understanding the underlying cellular mechanisms triggered by NTP remains incomplete. In order to boost the field closer to real-life clinical applications, there is a need for a critical overview of the current state-of-the-art. In this review, we conduct a critical analysis of the NTP-triggered modulation of immune cells. Importantly, we analyze pitfalls in the field and identify persisting challenges. We show that the identification of misconceptions opens a door to the development of a research strategy to overcome these limitations. Finally, we propose the idea that solving problems highlighted in this review will accelerate the clinical translation of NTP-based treatments.


Assuntos
Imunidade Celular/efeitos dos fármacos , Gases em Plasma/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Transdução de Sinais/efeitos dos fármacos
6.
Cell Physiol Biochem ; 52(1): 119-140, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30790509

RESUMO

BACKGROUND/AIMS: Alteration of cancer cell redox status has been recognized as a promising therapeutic implication. In recent years, the emerged field of non-thermal plasma (NTP) has shown considerable promise in various biomedical applications, including cancer therapy. However, understanding the molecular mechanisms procuring cellular responses remains incomplete. Thus, the aim of this study was a rigorous biochemical analysis of interactions between NTP and liver cancer cells. METHODS: The concept was validated using three different cell lines. We provide several distinct lines of evidence to support our findings; we use various methods (epifluorescent and confocal microscopy, clonogenic and cytotoxicity assays, Western blotting, pharmacological inhibition studies, etc.). RESULTS: We assessed the influence of NTP on three human liver cancer cell lines (Huh7, Alexander and HepG2). NTP treatment resulted in higher anti-proliferative effect against Alexander and Huh7 relative to HepG2. Our data clearly showed that the NTP-mediated alternation of mitochondrial membrane potential and dynamics led to ROS-mediated apoptosis in Huh7 and Alexander cells. Interestingly, plasma treatment resulted in p53 down-regulation in Huh7 cells. High levels of Bcl-2 protein expression in HepG2 resulted in their resistance in response to oxidative stress- mediated by plasma. CONCLUSION: We show thoroughly time- and dose-dependent kinetics of ROS accumulation in HCC cells. Furthermore, we show nuclear compartmentalization of the superoxide anion triggered by NTP. NTP induced apoptotic death in Huh7 liver cancer cells via simultaneous downregulation of mutated p53, pSTAT1 and STAT1. Contrary, hydrogen peroxide treatment results in autophagic cell death. We disclosed detailed mechanisms of NTP-mediated alteration of redox signalling in liver cancer cells.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Gases em Plasma/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Proteína Supressora de Tumor p53/biossíntese , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Morte Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Oxirredução/efeitos dos fármacos , Proteína Supressora de Tumor p53/genética
7.
Int J Mol Sci ; 20(18)2019 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-31547264

RESUMO

The transplantation of Wharton's jelly derived mesenchymal stromal cells (WJ-MSCs) possesses therapeutic potential for the treatment of a spinal cord injury (SCI). Generally, the main effect of MSCs is mediated by their paracrine potential. Therefore, application of WJ-MSC derived conditioned media (CM) is an acknowledged approach for how to bypass the limited survival of transplanted cells. In this study, we compared the effect of human WJ-MSCs and their CM in the treatment of SCI in rats. WJ-MSCs and their CM were intrathecally transplanted in the three consecutive weeks following the induction of a balloon compression lesion. Behavioral analyses were carried out up to 9 weeks after the SCI and revealed significant improvement after the treatment with WJ-MSCs and CM, compared to the saline control. Both WJ-MSCs and CM treatment resulted in a higher amount of spared gray and white matter and enhanced expression of genes related to axonal growth. However, only the CM treatment further improved axonal sprouting and reduced the number of reactive astrocytes in the lesion area. On the other hand, WJ-MSCs enhanced the expression of inflammatory and chemotactic markers in plasma, which indicates a systemic immunological response to xenogeneic cell transplantation. Our results confirmed that WJ-MSC derived CM offer an alternative to direct stem cell transplantation for the treatment of SCI.


Assuntos
Meios de Cultivo Condicionados/farmacologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Traumatismos da Medula Espinal/terapia , Geleia de Wharton/citologia , Animais , Células Cultivadas , Citocinas/sangue , Humanos , Masculino , Transplante de Células-Tronco Mesenquimais/métodos , Ratos , Ratos Wistar , Traumatismos da Medula Espinal/sangue , Traumatismos da Medula Espinal/fisiopatologia
8.
J Mater Sci Mater Med ; 29(7): 89, 2018 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-29938301

RESUMO

While many types of biomaterials have been evaluated in experimental spinal cord injury (SCI) research, little is known about the time-related dynamics of the tissue infiltration of these scaffolds. We analyzed the ingrowth of connective tissue, axons and blood vessels inside the superporous poly (2-hydroxyethyl methacrylate) hydrogel with oriented pores. The hydrogels, either plain or seeded with mesenchymal stem cells (MSCs), were implanted in spinal cord transection at the level of Th8. The animals were sacrificed at days 2, 7, 14, 28, 49 and 6 months after SCI and histologically evaluated. We found that within the first week, the hydrogels were already infiltrated with connective tissue and blood vessels, which remained stable for the next 6 weeks. Axons slowly and gradually infiltrated the hydrogel within the first month, after which the numbers became stable. Six months after SCI we observed rare axons crossing the hydrogel bridge and infiltrating the caudal stump. There was no difference in the tissue infiltration between the plain hydrogels and those seeded with MSCs. We conclude that while connective tissue and blood vessels quickly infiltrate the scaffold within the first week, axons show a rather gradual infiltration over the first month, and this is not facilitated by the presence of MSCs inside the hydrogel pores. Further research which is focused on the permissive micro-environment of the hydrogel scaffold is needed, to promote continuous and long-lasting tissue regeneration across the spinal cord lesion.


Assuntos
Materiais Biocompatíveis/química , Transplante de Células-Tronco Mesenquimais , Traumatismos da Medula Espinal/terapia , Alicerces Teciduais/química , Animais , Axônios/patologia , Hidrogéis , Masculino , Teste de Materiais , Neovascularização Fisiológica , Oligopeptídeos/química , Poli-Hidroxietil Metacrilato/química , Porosidade , Ratos , Ratos Wistar , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia , Regeneração da Medula Espinal/fisiologia , Fatores de Tempo
9.
Int J Mol Sci ; 19(9)2018 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-30131482

RESUMO

Methacrylate hydrogels have been extensively used as bridging scaffolds in experimental spinal cord injury (SCI) research. As synthetic materials, they can be modified, which leads to improved bridging of the lesion. Fibronectin, a glycoprotein of the extracellular matrix produced by reactive astrocytes after SCI, is known to promote cell adhesion. We implanted 3 methacrylate hydrogels: a scaffold based on hydroxypropylmethacrylamid (HPMA), 2-hydroxyethylmethacrylate (HEMA) and a HEMA hydrogel with an attached fibronectin (HEMA-Fn) in an experimental model of acute SCI in rats. The animals underwent functional evaluation once a week and the spinal cords were histologically assessed 3 months after hydrogel implantation. We found that both the HPMA and the HEMA-Fn hydrogel scaffolds lead to partial sensory improvement compared to control animals and animals treated with plain HEMA scaffold. The HPMA scaffold showed an increased connective tissue infiltration compared to plain HEMA hydrogels. There was a tendency towards connective tissue infiltration and higher blood vessel ingrowth in the HEMA-Fn scaffold. HPMA hydrogels showed a significantly increased axonal ingrowth compared to HEMA-Fn and plain HEMA; while there were some neurofilaments in the peripheral as well as the central region of the HEMA-Fn scaffold, no neurofilaments were found in plain HEMA hydrogels. In conclusion, HPMA hydrogel as well as the HEMA-Fn scaffold showed better bridging qualities compared to the plain HEMA hydrogel, which resulted in very limited partial sensory improvement.


Assuntos
Hidrogéis , Metacrilatos , Regeneração Nervosa , Traumatismos da Medula Espinal/terapia , Animais , Axônios/fisiologia , Materiais Biocompatíveis , Biomarcadores , Barreira Hematoencefálica/metabolismo , Tecido Conjuntivo , Modelos Animais de Doenças , Matriz Extracelular/metabolismo , Expressão Gênica , Metacrilatos/química , Neovascularização Fisiológica , Ratos , Traumatismos da Medula Espinal/etiologia , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Alicerces Teciduais , Cicatrização
10.
Int J Mol Sci ; 19(5)2018 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-29772841

RESUMO

Human mesenchymal stem cells derived from Wharton's jelly (WJ-MSCs) were used for the treatment of the ischemic-compression model of spinal cord injury in rats. To assess the effectivity of the treatment, different dosages (0.5 or 1.5 million cells) and repeated applications were compared. Cells or saline were applied intrathecally by lumbar puncture for one week only, or in three consecutive weeks after injury. Rats were assessed for locomotor skills (BBB, rotarod, flat beam) for 9 weeks. Spinal cord tissue was morphometrically analyzed for axonal sprouting, sparing of gray and white matter and astrogliosis. Endogenous gene expression (Gfap, Casp3, Irf5, Cd86, Mrc1, Cd163) was studied with quantitative Real-time polymerase chain reaction (qRT PCR). Significant recovery of functional outcome was observed in all of the treated groups except for the single application of the lowest number of cells. Histochemical analyses revealed a gradually increasing effect of grafted cells, resulting in a significant increase in the number of GAP43+ fibers, a higher amount of spared gray matter and reduced astrogliosis. mRNA expression of macrophage markers and apoptosis was downregulated after the repeated application of 1.5 million cells. We conclude that the effect of hWJ-MSCs on spinal cord regeneration is dose-dependent and potentiated by repeated application.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Traumatismos da Medula Espinal/terapia , Geleia de Wharton/citologia , Animais , Apoptose , Astrócitos , Axônios/metabolismo , Biomarcadores , Diferenciação Celular , Sobrevivência Celular , Células Cultivadas , Modelos Animais de Doenças , Expressão Gênica , Substância Cinzenta/metabolismo , Substância Cinzenta/patologia , Humanos , Locomoção , Ratos , Traumatismos da Medula Espinal/diagnóstico , Traumatismos da Medula Espinal/etiologia , Traumatismos da Medula Espinal/metabolismo , Substância Branca/metabolismo , Substância Branca/patologia
11.
Int J Mol Sci ; 17(1)2015 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-26729105

RESUMO

Well known for its anti-oxidative and anti-inflammation properties, curcumin is a polyphenol found in the rhizome of Curcuma longa. In this study, we evaluated the effects of curcumin on behavioral recovery, glial scar formation, tissue preservation, axonal sprouting, and inflammation after spinal cord injury (SCI) in male Wistar rats. The rats were randomized into two groups following a balloon compression injury at the level of T9-T10 of the spinal cord, namely vehicle- or curcumin-treated. Curcumin was applied locally on the surface of the injured spinal cord immediately following injury and then given intraperitoneally daily; the control rats were treated with vehicle in the same manner. Curcumin treatment improved behavioral recovery within the first week following SCI as evidenced by improved Basso, Beattie, and Bresnahan (BBB) test and plantar scores, representing locomotor and sensory performance, respectively. Furthermore, curcumin treatment decreased glial scar formation by decreasing the levels of MIP1α, IL-2, and RANTES production and by decreasing NF-κB activity. These results, therefore, demonstrate that curcumin has a profound anti-inflammatory therapeutic potential in the treatment of spinal cord injury, especially when given immediately after the injury.


Assuntos
Curcumina/farmacologia , Imunomodulação , Recuperação de Função Fisiológica , Traumatismos da Medula Espinal/tratamento farmacológico , Medula Espinal/fisiopatologia , Animais , Anti-Inflamatórios/farmacologia , Modelos Animais de Doenças , Masculino , Ratos , Ratos Wistar , Traumatismos da Medula Espinal/imunologia , Traumatismos da Medula Espinal/fisiopatologia
12.
Cell Biochem Funct ; 32(7): 597-604, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25251698

RESUMO

Adipose tissue is an abundant source of autologous adult stem cells that may bring new therapeutic perspectives on the treatment of diabetes and its complications. It is unclear whether adipose tissue-derived stromal cells (ASCs) of diabetic patients, constantly influenced by hyperglycaemia, have the same properties as non-diabetic controls. As an alternative source of ASCs, adipose tissue from distal limbs of diabetic patients with critical ischemia was isolated. ASCs were characterized in terms of cell surface markers, multilineage differentiation and the expression of vascular endothelial growth factor (VEGFA), chemokine-related genes and compared with non-diabetic controls. Flow cytometry analysis confirmed mesenchymal phenotypes in both diabetic and non-diabetic ASCs. Nevertheless, 40% of diabetic and 20% of non-diabetic ASC samples displayed high expressions of fibroblast marker, which inversely correlated with the expression of CD105. In diabetic patients, significantly decreased expression of VEGFA and chemokine receptor CXCR4 was found in fibroblast-positive ASCs, compared with their fibroblast-negative counterparts. Reduced osteogenic differentiation and the downregulation of chemokine CXCL12 were found in fibroblast-negative diabetic ASCs. Both diabetic and non-diabetic ASCs were differentiated into adipocytes and chondrocytes and did not reveal islet-like cell differentiation. According to this study, adipose tissue from distal limbs of diabetic patients is not satisfactory as an autologous ASC source. Hyperglycaemic milieu as well as other metabolic disorders linked to diabetes may have an influence on endogenous stem cell properties. The present study investigated the feasibility of autologous stem cell therapy in diabetic patients. ASCs isolated from the ischemic limb of diabetic patients were found to be less potent when compared phenotypically and functionally to control non-diabetic counterparts with no signs of limb ischemia. High expression of fibroblast markers associated with reduced expression of VEGFA as well as reduced osteogenic differentiation may have an impact on the effectiveness of autologous cell therapies in diabetic patients.


Assuntos
Diabetes Mellitus/patologia , Extremidades/patologia , Gordura Subcutânea/citologia , Adipócitos/citologia , Adipócitos/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Antígenos CD/metabolismo , Biomarcadores/metabolismo , Estudos de Casos e Controles , Diferenciação Celular , Condrócitos/citologia , Condrócitos/metabolismo , Citocinas/metabolismo , Pé Diabético/patologia , Endoglina , Extremidades/irrigação sanguínea , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Isquemia/patologia , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Pessoa de Meia-Idade , Osteoblastos/citologia , Osteoblastos/metabolismo , Receptores de Superfície Celular/metabolismo , Células Estromais/citologia , Células Estromais/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
13.
Int J Mol Sci ; 15(7): 11275-93, 2014 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-24968269

RESUMO

Transplantation of mesenchymal stem cells (MSC) improves functional recovery in experimental models of spinal cord injury (SCI); however, the mechanisms underlying this effect are not completely understood. We investigated the effect of intrathecal implantation of human MSC on functional recovery, astrogliosis and levels of inflammatory cytokines in rats using balloon-induced spinal cord compression lesions. Transplanted cells did not survive at the lesion site of the spinal cord; however, functional recovery was enhanced in the MSC-treated group as was confirmed by the Basso, Beattie, and Bresnahan (BBB) and the flat beam test. Morphometric analysis showed a significantly higher amount of remaining white matter in the cranial part of the lesioned spinal cords. Immunohistochemical analysis of the lesions indicated the rearrangement of the glial scar in MSC-treated animals. Real-time PCR analysis revealed an increased expression of Irf5, Mrc1, Fgf2, Gap43 and Gfap. Transplantation of MSCs into a lesioned spinal cord reduced TNFα, IL-4, IL-1ß, IL-2, IL-6 and IL-12 and increased the levels of MIP-1α and RANTES when compared to saline-treated controls. Intrathecal implantation of MSCs reduces the inflammatory reaction and apoptosis, improves functional recovery and modulates glial scar formation after SCI, regardless of cell survival. Therefore, repeated applications may prolong the beneficial effects induced by MSC application.


Assuntos
Quimiocina CCL5/metabolismo , Interleucinas/metabolismo , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Traumatismos da Medula Espinal/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Quimiocina CCL5/genética , Fator 2 de Crescimento de Fibroblastos/genética , Fator 2 de Crescimento de Fibroblastos/metabolismo , Proteína GAP-43/genética , Proteína GAP-43/metabolismo , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Interleucinas/genética , Locomoção , Masculino , Ratos , Ratos Wistar , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Traumatismos da Medula Espinal/terapia , Fator de Necrose Tumoral alfa/genética
14.
Sci Rep ; 14(1): 10243, 2024 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702388

RESUMO

The widespread use of multipotent mesenchymal stromal cell-derived secretome (MSC-sec) requires optimal preservation methods. Lyophilization offers benefits like concentrating the secretome, reducing the storage volume, and making storage conditions more flexible. This study evaluated the influence of storage duration and temperature on lyophilized MSC-sec. The conditioned medium from Wharton's jelly MSCs was stored at - 80 °C or lyophilized with or without trehalose. Lyophilized formulations were kept at - 80 °C, - 20 °C, 4 °C, or room temperature (RT) for 3 and 30 months. After storage and reconstitution, the levels of growth factors and cytokines were assessed using multiplex assay. The storage of lyophilized MSC-sec at - 80 °C ensured biomolecule preservation for 3 and 30 months. Following 3 month storage at 4 °C and RT, a notable decrease occurred in BDNF, bNGF, and sVCAM-1 levels. Prolonged 30 month storage at the same temperatures significantly reduced BDNF, bNGF, VEGF-A, IL-6, and sVCAM-1, while storage at - 20 °C decreased BDNF, bNGF, and VEGF- A levels. Trehalose supplementation of MSC-sec improved the outcome during storage at 4 °C and RT. Proper storage conditions were crucial for the preservation of lyophilized MSC-sec composition. Short-term storage at various temperatures maintained over 60% of the studied growth factors and cytokines; long-term preservation was only adequate at -80 °C.


Assuntos
Liofilização , Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Humanos , Secretoma/metabolismo , Trealose/metabolismo , Trealose/farmacologia , Citocinas/metabolismo , Células Cultivadas , Meios de Cultivo Condicionados/química , Criopreservação/métodos , Temperatura
15.
Exp Eye Res ; 116: 312-23, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24145108

RESUMO

The purpose of this study was to investigate whether rabbit bone marrow-derived mesenchymal stem cells (MSCs) effectively decrease alkali-induced oxidative stress in the rabbit cornea. The alkali (0.15 N NaOH) was applied on the corneas of the right eyes and then rinsed with tap water. In the first group of rabbits the injured corneas remained untreated. In the second group MSCs were applied on the injured corneal surface immediately after the injury and eyelids sutured for two days. Then the sutures were removed. In the third group nanofiber scaffolds seeded with MSCs (and in the fourth group nanofibers alone) were transferred onto the corneas immediately after the injury and the eyelids sutured. Two days later the eyelid sutures were removed together with the nanofiber scaffolds. The rabbits were sacrificed on days four, ten or fifteen after the injury, and the corneas were examined immunohistochemically, morphologically, for the central corneal thickness (taken as an index of corneal hydration) using an ultrasonic pachymeter and by real-time PCR. Results show that in untreated injured corneas the expression of malondialdehyde (MDA) and nitrotyrosine (NT) (important markers of lipid peroxidation and oxidative stress) appeared in the epithelium. The antioxidant aldehyde dehydrogenase 3A1 (ALDH3A1) decreased in the corneal epithelium, particularly in superficial parts, where apoptotic cell death (detected by active caspase-3) was high. (In control corneal epithelium MDA and NT are absent and ALDH3A1 highly present in all layers of the epithelium. Cell apoptosis are sporadic). In injured untreated cornea further corneal disturbances developed: The expressions of matrix metalloproteinase 9 (MMP9) and proinflammatory cytokines, were high. At the end of experiment (on day 15) the injured untreated corneas were vascularized and numerous inflammatory cells were present in the corneal stroma. Vascular endothelial growth factor (VEGF) expression and number of macrophages were high. The results obtained in injured corneas covered with nanofiber scaffolds alone (without MSCs) or in injured corneas treated with MSCs only (transferred without scaffolds) did not significantly differ from the results found in untreated injured corneas. In contrast, in the injured corneas treated with MSCs on nanofiber scaffolds, ALDH3A1 expression remained high in the epithelium (as in the control cornea) and positive expression of the other immunohistochemical markers employed was very low (MMP9) or absent (NT, MDA, proinflammatory cytokines), also similarly as in the control cornea. Corneal neovascularization and the infiltration of the corneal stroma with inflammatory cells were significantly suppressed in the injured corneas treated with MSCs compared to the untreated injured ones. The increased central corneal thickness together with corneal opalescency appearing after alkali injury returned to normal levels over the course of ten days only in the injured corneas treated with MSCs on nanofiber scaffolds. The expression of genes for the proinflammatory cytokines corresponded with their immunohistochemical expression. In conclusion, MSCs on nanofiber scaffolds protected the formation of toxic peroxynitrite (detected by NT residues), lowered apoptotic cell death and decreased matrix metalloproteinase and pro-inflammatory cytokine production. This resulted in reduced corneal inflammation as well as neovascularization and significantly accelerated corneal healing.


Assuntos
Queimaduras Químicas/cirurgia , Córnea/cirurgia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Nanofibras/uso terapêutico , Estresse Oxidativo , Alicerces Teciduais , Álcalis/toxicidade , Animais , Queimaduras Químicas/patologia , Córnea/patologia , Lesões da Córnea , Modelos Animais de Doenças , Feminino , Coelhos , Cicatrização
16.
Sci Rep ; 13(1): 19183, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932336

RESUMO

Spinal cord injury (SCI) induces the upregulation of chondroitin sulfate proteoglycans (CSPGs) at the glial scar and inhibits neuroregeneration. Under normal physiological condition, CSPGs interact with hyaluronan (HA) and other extracellular matrix on the neuronal surface forming a macromolecular structure called perineuronal nets (PNNs) which regulate neuroplasticity. 4-methylumbelliferone (4-MU) is a known inhibitor for HA synthesis but has not been tested in SCI. We first tested the effect of 4-MU in HA reduction in uninjured rats. After 8 weeks of 4-MU administration at a dose of 1.2 g/kg/day, we have not only observed a reduction of HA in the uninjured spinal cords but also a down-regulation of CS glycosaminoglycans (CS-GAGs). In order to assess the effect of 4-MU in chronic SCI, six weeks after Th8 spinal contusion injury, rats were fed with 4-MU or placebo for 8 weeks in combination with daily treadmill rehabilitation for 16 weeks to promote neuroplasticity. 4-MU treatment reduced the HA synthesis by astrocytes around the lesion site and increased sprouting of 5-hydroxytryptamine fibres into ventral horns. However, the current dose was not sufficient to suppress CS-GAG up-regulation induced by SCI. Further adjustment on the dosage will be required to benefit functional recovery after SCI.


Assuntos
Gliose , Traumatismos da Medula Espinal , Animais , Ratos , Proteoglicanas de Sulfatos de Condroitina , Gliose/patologia , Ácido Hialurônico , Himecromona/uso terapêutico , Medula Espinal/patologia
17.
Orphanet J Rare Dis ; 18(1): 144, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37308991

RESUMO

BACKGROUND: The Mechanism of Coordinated Access to Orphan Medicinal Products (MoCA) was established in 2013 with the intention of developing a coordinated mechanism between volunteering EU stakeholders and developers of Orphan Medicinal Products (OMPs) to support the exchange of information aimed at enabling informed decisions on pricing and reimbursement at Member State level and to evaluate the value of an OMP based on a Transparent Value Framework. The objective of the collaborative approach was to support more equitable access to authorised therapies for people living with rare diseases, rational prices for payers and more predictable market conditions for OMP developers. Over the past 10 years, the MoCA has conducted a series of pilot projects, examining a variety of different products and technologies at different stages of development; and with contributions from a variety of patient representatives, participation from EU payers from a range of Member States and, recently, with EUnetHTA members and the European Medicines Agency participating in the meetings as observers. RESULTS: 10 years on from the establishment of the MoCA, the European landscape has significantly evolved, not only in the field of drug development with increasingly transformative therapies based on novel technologies, but also in terms of larger numbers of approved treatments, increased budget impact and the resulting associated uncertainties; as well as in terms of stakeholder collaboration and interactions. The value of early dialogue with OMP developers, including the EU payer community via their national decision-making authorities, is a key element within this early interaction and contributes to identifying, managing and reducing uncertainties allowing a prospectively planned approach earlier in development and, consequently, to support more timely, sustainable and equitable access to new OMPs, particularly where there is a high unmet medical need. CONCLUSIONS: The voluntary, informal nature of the MoCA interactions creates a flexible framework for non-binding dialogue. A forum for such interactions is needed to achieve the aims of the MoCA and both to support healthcare systems in planning as well as to underpin timely, equitable and sustainable access to new therapies for patients with rare diseases within the EU.


Assuntos
Orçamentos , Doenças Raras , Humanos , Europa (Continente) , Desenvolvimento de Medicamentos
18.
J Cell Mol Med ; 16(11): 2564-82, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22805417

RESUMO

Spinal cord injury triggers a complex set of events that lead to tissue healing without the restoration of normal function due to the poor regenerative capacity of the spinal cord. Nevertheless, current knowledge about the intrinsic regenerative ability of central nervous system axons, when in a supportive environment, has made the prospect of treating spinal cord injury a reality. Among the range of strategies under investigation, cell-based therapies offer the most promising results, due to the multifactorial roles that these cells can fulfil. However, the best cell source is still a matter of debate, as are clinical issues that include the optimal cell dose as well as the timing and route of administration. In this context, the role of biomaterials is gaining importance. These can not only act as vehicles for the administered cells but also, in the case of chronic lesions, can be used to fill the permanent cyst, thus creating a more favourable and conducive environment for axonal regeneration in addition to serving as local delivery systems of therapeutic agents to improve the regenerative milieu. Some of the candidate molecules for the future are discussed in view of the knowledge derived from studying the mechanisms that facilitate the intrinsic regenerative capacity of central nervous system neurons. The future challenge for the multidisciplinary teams working in the field is to translate the knowledge acquired in basic research into effective combinatorial therapies to be applied in the clinic.


Assuntos
Regeneração Nervosa/fisiologia , Traumatismos da Medula Espinal/terapia , Transplante de Células-Tronco/métodos , Animais , Axônios/fisiologia , Materiais Biocompatíveis/uso terapêutico , Células-Tronco Embrionárias , Terapia Genética/métodos , Humanos , Hidrogéis , Células de Schwann/transplante , Medula Espinal/fisiologia , Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/fisiopatologia
19.
J Mater Sci Mater Med ; 23(4): 931-41, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22331377

RESUMO

Electrospun gelatin and poly-ε-caprolactone (PCL) nanofibers were prepared using needleless technology and their biocompatibility and therapeutic efficacy have been characterized in vitro in cell cultures and in an experimental model of a skin wound. Human dermal fibroblasts, keratinocytes and mesenchymal stem cells seeded on the nanofibers revealed that both nanofibers promoted cell adhesion and proliferation. The effect of nanofibers on wound healing was examined using a full thickness wound model in rats and compared with a standard control treatment with gauze. Significantly faster wound closure was found with gelatin after 5 and 10 days of treatment, but no enhancement with PCL nanofibers was observed. Histological analysis revealed enhanced epithelialisation, increased depth of granulation tissue and increased density of myofibroblasts in the wound area with gelatin nanofibers. The results show that gelatin nanofibers produced by needleless technology accelerate wound healing and may be suitable as a scaffold for cell transfer and skin regeneration.


Assuntos
Materiais Biocompatíveis , Nanofibras , Cicatrização , Humanos
20.
Brain Res Bull ; 181: 144-156, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35066096

RESUMO

Hyaluronan (HA) is a core constituent of perineuronal nets (PNNs) that surround subpopulations of neurones. The PNNs control synaptic stabilization in both the developing and adult central nervous system, and disruption of PNNs has shown to reactivate neuroplasticity. We investigated the possibility of memory prolongation by attenuating PNN formation using 4-methylumbelliferone (4-MU), an inhibitor of HA synthesis. Adult C57BL/6 mice were fed with chow containing 5% (w/w) 4-MU for 6 months, at a dose ~6.7 mg/g/day. The oral administration of 4-MU reduced the glycosaminoglycan level in the brain to 72% and the spinal cord to 50% when compared to the controls. Spontaneous object recognition test (SOR) performed at 2, 3, 6 and 7 months showed a significant increase in SOR score in the 6-months treatment group 24 h after object presentation. The effect however did not persist in the washout group (1-month post treatment). Immunohistochemistry confirmed a reduction of PNNs, with shorter and less arborization of aggrecan staining around dendrites in hippocampus after 6 months of 4-MU treatment. Histopathological examination revealed mild atrophy in articular cartilage but it did not affect the motor performance as demonstrated in rotarod test. In conclusion, systemic oral administration of 4-MU for 6 months reduced PNN formation around neurons and enhanced memory retention in mice. However, the memory enhancement was not sustained despite the reduction of PNNs, possibly due to the lack of memory enhancement training during the washout period. Our results suggest that 4-MU treatment might offer a strategy for PNN modulation in memory enhancement.


Assuntos
Agrecanas/efeitos dos fármacos , Sistema Nervoso Central/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Ácido Hialurônico/metabolismo , Himecromona/farmacologia , Plasticidade Neuronal/efeitos dos fármacos , Oligodendroglia/efeitos dos fármacos , Reconhecimento Psicológico/efeitos dos fármacos , Administração Oral , Animais , Comportamento Animal/efeitos dos fármacos , Feminino , Himecromona/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA