Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Environ Manage ; 280: 111734, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33288317

RESUMO

Hazardous waste disposal via incineration generates a substantial amount of ashes and slags which pose an environmental risk due to their toxicity. Currently, these residues are deposited in landfills with loss of potentially recyclable raw material. In this study, the use of acidophilic bioleaching bacteria (Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans, and Leptospirillum ferrooxidans) as an environmentally friendly, efficient strategy for the recovery of valuable metals from incineration residues was investigated. Zinc, Cobalt, Copper, and Manganese from three different incineration residues were bio-extracted up to 100% using A. ferrooxidans under ferrous iron oxidation. The other metals showed lower leaching efficiencies based on the type of culture used. Sulfur-oxidizing cultures A. ferrooxidans and A. thiooxidans, containing sulfur as the sole substrate, expressed a significantly lower leaching efficiency (up to 50%). According to ICP-MS, ashes and slags contained Fe, Zn, Cu, Mn, Cr, Cd, and Ni in economically attractive concentrations between 0.2 and 75 mg g-1. Compared to conventional hydrometallurgical and pyrometallurgical processes, our biological approach provides many advantages such as: the use of a limited amount of used strong acids (H2SO4 or HCl), recycling operations at lower temperatures (~30 °C) and no emission of toxic gases during combustion (i.e., dioxins and furans).


Assuntos
Acidithiobacillus , Incineração , Bactérias , Ferro , Oxirredução , Enxofre
2.
J Environ Manage ; 205: 50-58, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28964974

RESUMO

Geodiversity plays an important role in species establishment during spontaneous succession. At post-mining sites in the Czech Republic in 2003, we established plots in which the surface of the heaped overburden was either kept wave-like or leveled. Based on surveys conducted from 2006 to 2015, leveled plots were increasingly dominated by grasses and herbs (and especially by the grass Calamagrostis epigejos) while the wave-like plots were increasingly dominated by the trees Salix caprea and Betula pendula. In 2015, a detailed survey was conducted of the dominant species. Both S. caprea and B. pendula occurred more often in wave-like plots than in leveled plots; this was particularly true for trees taller than 1 m, which were absent in leveled plots. In wave-like plots, leaf and root biomasses of both woody species were higher on the wave slopes than on the wave depressions. Nitrogen content was higher but content stress indicating proline in leaves of S. caprea was lower in wave-like plots than in leveled plots. In wave-like plots, both woody species occurred mainly on wave slopes but C. epigejos occurred mainly in the depressions. We speculate that trees were more abundant in wave-like plots than in leveled plots because the waves trapped tree seeds and snow and because the soil porosity was greater in wave-like than in leveled plots. Grasses may have preferred the leveled plots because soil porosity was lower and clay content was higher in leveled than in wave-like plots.


Assuntos
Meio Ambiente , Poaceae , República Tcheca , Solo , Árvores , Madeira
3.
Heliyon ; 10(3): e25476, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38327433

RESUMO

Purpose: This study investigates the impact of the Russian Ruble on the Czech crown, Polish zloty, and Hungarian forint during the Russia-Ukraine war. The euro is used as a comparative base unit in the four exchange rate parities. The Euro was used since the Czech Republic, Hungary, Poland, and Russia maintain intensive economic relations with the Eurozone. At the same time, the Visegrad (V4) countries are geographically located in the European continent and are bordered by the Eurozone member states. Methods: The series stands in daily frequency and indicate the period from February 1, 2022, to February 1, 2023. To generate the results, the VAR impulse response function, variance decomposition, vector error correction model, and granger causality test were performed. Results: Even though Russia demanded that gas payments be made in Rubles, this fact did not affect the Czech crown, Polish zloty, and Hungarian forint. Due to the fact that gas payments for the V4 countries were agreed in Euros through German contractors. During this period, the strong influence of the Czech crown on the Polish zloty and the Hungarian forint is observed. Implications: From a policy perspective, the results provide indications for the national governments and regulatory bodies on the implications of the Russian ruble during this conflict. In short, our findings document that the instability of currency pairs is not only economic but also geopolitical. Energy dependence on autocratic states not only endangers national security but can set exchange rates in cardiac arrest. Moreover, the geographical proximity to the conflict zone tends to be decisive in the collapse of national currencies.

4.
Front Microbiol ; 15: 1347072, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38348186

RESUMO

The demand for lithium-ion batteries (LIBs) has dramatically increased in recent years due to their application in various electronic devices and electric vehicles (EVs). Great amount of LIB waste is generated, most of which ends up in landfills. LIB wastes contain substantial amounts of critical metals (such as Li, Co, Ni, Mn, and Cu) and can therefore serve as valuable secondary sources of these metals. Metal recovery from the black mass (shredded spent LIBs) can be achieved via bioleaching, a microbiology-based technology that is considered to be environmentally friendly, due to its lower costs and energy consumption compared to conventional pyrometallurgy or hydrometallurgy. However, the growth and metabolism of bioleaching microorganisms can be inhibited by dissolved metals. In this study, the indigenous acidophilic chemolithotrophs in a sediment from a highly acidic and metal-contaminated mine pit lake were enriched in a selective medium containing iron, sulfur, or both electron donors. The enriched culture with the highest growth and oxidation rate and the lowest microbial diversity (dominated by Acidithiobacillus and Alicyclobacillus spp. utilizing both electron donors) was then gradually adapted to increasing concentrations of Li+, Co2+, Ni2+, Mn2+, and Cu2+. Finally, up to 100% recovery rates of Li, Co, Ni, Mn, and Al were achieved via two-step bioleaching using the adapted culture, resulting in more effective metal extraction compared to bioleaching with a non-adapted culture and abiotic control.

5.
Antonie Van Leeuwenhoek ; 103(4): 905-19, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23291738

RESUMO

In contrast to iron-oxidizing Acidithiobacillus ferrooxidans, A. ferrooxidans from a stationary phase elemental sulfur-oxidizing culture exhibited a lag phase in pyrite oxidation, which is similar to its behaviour during ferrous iron oxidation. The ability of elemental sulfur-oxidizing A. ferrooxidans to immediately oxidize ferrous iron or pyrite without a lag phase was only observed in bacteria obtained from growing cultures with elemental sulfur. However, these cultures that shifted to ferrous iron oxidation showed a low rate of ferrous iron oxidation while no growth was observed. Two-dimensional gel electrophoresis was used for a quantitative proteomic analysis of the adaptation process when bacteria were switched from elemental sulfur to ferrous iron. A comparison of total cell lysates revealed 39 proteins whose increase or decrease in abundance was related to this phenotypic switching. However, only a few proteins were closely related to iron and sulfur metabolism. Reverse-transcription quantitative PCR was used to further characterize the bacterial adaptation process. The expression profiles of selected genes primarily involved in the ferrous iron oxidation indicated that phenotypic switching is a complex process that includes the activation of genes encoding a membrane protein, maturation proteins, electron transport proteins and their regulators.


Assuntos
Acidithiobacillus/metabolismo , Proteínas de Bactérias/biossíntese , Compostos Ferrosos/metabolismo , Regulação da Expressão Gênica , Redes e Vias Metabólicas/genética , Acidithiobacillus/crescimento & desenvolvimento , Acidithiobacillus/fisiologia , Adaptação Fisiológica , Eletroforese em Gel Bidimensional , Perfilação da Expressão Gênica , Ferro/metabolismo , Oxirredução , Proteoma/análise , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sulfetos/metabolismo , Enxofre/metabolismo , Transcrição Gênica
6.
Sci Rep ; 13(1): 10876, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37407610

RESUMO

The recent revision of the Acidithiobacillia class using genomic taxonomy methods has shown that, in addition to the existence of previously unrecognized genera and species, some species of the class harbor levels of divergence that are congruent with ongoing differentiation processes. In this study, we have performed a subspecies-level analysis of sequenced strains of Acidithiobacillus ferrooxidans to prove the existence of distinct sublineages and identify the discriminant genomic/genetic characteristics linked to these sublineages, and to shed light on the processes driving such differentiation. Differences in the genomic relatedness metrics, levels of synteny, gene content, and both integrated and episomal mobile genetic elements (MGE) repertoires support the existence of two subspecies-level taxa within A. ferrooxidans. While sublineage 2A harbors a small plasmid related to pTF5, this episomal MGE is absent in sublineage 2B strains. Likewise, clear differences in the occurrence, coverage and conservation of integrated MGEs are apparent between sublineages. Differential MGE-associated gene cargo pertained to the functional categories of energy metabolism, ion transport, cell surface modification, and defense mechanisms. Inferred functional differences have the potential to impact long-term adaptive processes and may underpin the basis of the subspecies-level differentiation uncovered within A. ferrooxidans. Genome resequencing of iron- and sulfur-adapted cultures of a selected 2A sublineage strain (CCM 4253) showed that both episomal and large integrated MGEs are conserved over twenty generations in either growth condition. In turn, active insertion sequences profoundly impact short-term adaptive processes. The ISAfe1 element was found to be highly active in sublineage 2A strain CCM 4253. Phenotypic mutations caused by the transposition of ISAfe1 into the pstC2 encoding phosphate-transport system permease protein were detected in sulfur-adapted cultures and shown to impair growth on ferrous iron upon the switch of electron donor. The phenotypic manifestation of the △pstC2 mutation, such as a loss of the ability to oxidize ferrous iron, is likely related to the inability of the mutant to secure the phosphorous availability for electron transport-linked phosphorylation coupled to iron oxidation. Depletion of the transpositional △pstC2 mutation occurred concomitantly with a shortening of the iron-oxidation lag phase at later transfers on a ferrous iron-containing medium. Therefore, the pstII operon appears to play an essential role in A. ferrooxidans when cells oxidize ferrous iron. Results highlight the influence of insertion sequences and both integrated and episomal mobile genetic elements in the short- and long-term adaptive processes of A. ferrooxidans strains under changing growth conditions.


Assuntos
Acidithiobacillus , Elementos de DNA Transponíveis , Elementos de DNA Transponíveis/genética , Acidithiobacillus/genética , Acidithiobacillus/metabolismo , Ferro/metabolismo , Enxofre/metabolismo , Oxirredução
7.
Front Microbiol ; 14: 1238853, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37664121

RESUMO

Metal recycling is essential for strengthening a circular economy. Microbial leaching (bioleaching) is an economical and environmentally friendly technology widely used to extract metals from insoluble ores or secondary resources such as dust, ashes, and slags. On the other hand, microbial electrolysis cells (MECs) would offer an energy-efficient application for recovering valuable metals from an aqueous solution. In this study, we investigated a MEC for Zn recovery from metal-laden bioleachate for the first time by applying a constant potential of -100 mV vs. Ag/AgCl (3 M NaCl) on a synthetic wastewater-treating bioanode. Zn was deposited onto the cathode surface with a recovery efficiency of 41 ± 13% and an energy consumption of 2.55 kWh kg-1. For comparison, Zn recovery from zinc sulfate solution resulted in a Zn recovery efficiency of 100 ± 0% and an energy consumption of 0.70 kWh kg-1. Furthermore, selective metal precipitation of the bioleachate was performed. Individual metals were almost completely precipitated from the bioleachate at pH 5 (Al), pH 7 (Zn and Fe), and pH 9 (Mg and Mn).

8.
Mol Oral Microbiol ; 38(5): 424-441, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37440366

RESUMO

Recent RNA sequencing studies have given us a deeper insight into the cariogenic impact of carbohydrate sources in the bacterium Streptococcus mutans, the principal microbial agent in dental caries etiopathogenesis. The process of dental caries development is facilitated by the ability of this bacterium to ferment some carbohydrates into organic acids contributing to a pH decrease in the oral cavity and the demineralization of the hard tissues of the tooth. Furthermore, in dental caries progression, biofilm formation, which starts and ends with free planktonic cells, plays an important role and has several unique properties called virulence factors. The most cariogenic carbohydrate is sucrose, an easily metabolizable source of energy that induces the acidification and synthesis of glucans, forming typical bacterial cell clumps. We used multifaceted methodological approaches to compare the transcriptomic and metabolomic profiles of S. mutans growing in planktonic culture on preferred and nonpreferred carbohydrates and in fasting conditions. Streptococcus mutans in a planktonic culture with lactose produced the same pH drop as glucose and sucrose. By contrast, xylitol and lactose showed high effectiveness in regulating intracellular polysaccharide metabolism, cell wall structure, and overall virulence involved in the initial phase of biofilm formation and structure but with an opposite pattern compared with sucrose and glucose. Our results confirmed the recent findings that xylitol and lactose play a vital role in biofilm structure. However, they do not reduce its formation, which is related to the creation of a cariogenic environment.

9.
Antonie Van Leeuwenhoek ; 101(4): 919-22, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22249244

RESUMO

The conventional stoichiometry of the oxidation of elemental sulfur by ferric iron in Acidithiobacillus ferrooxidans was not in agreement with our experimental data in terms of ferrous iron and proton formation. Reaction modelling under the actual conditions of bacterial activity resulted in a different stoichiometry, where additional iron species participate in the process to affect the number of released protons. The suggested reaction equation may more accurately predict the intensity of environmental acidification during the anaerobic bioprocess.


Assuntos
Acidithiobacillus/metabolismo , Compostos Férricos/metabolismo , Ferro/metabolismo , Enxofre/metabolismo , Anaerobiose , Metabolismo Energético , Compostos Ferrosos/metabolismo , Oxirredução
10.
Antonie Van Leeuwenhoek ; 101(3): 561-73, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22057833

RESUMO

Elemental sulfur oxidation by ferric iron in Acidithiobacillus ferrooxidans was investigated. The apparent Michaelis constant for ferric iron was 18.6 mM. An absence of anaerobic ferric iron reduction ability was observed in bacteria maintained on elemental sulfur for an extended period of time. Upon transition from ferrous iron to elemental sulfur medium, the cells exhibited similar kinetic characteristics of ferric iron reduction under anaerobic conditions to those of cells that were originally maintained on ferrous iron. Nevertheless, a total loss of anaerobic ferric iron reduction ability after the sixth passage in elemental sulfur medium was demonstrated. The first proteomic screening of total cell lysates of anaerobically incubated bacteria resulted in the detection of 1599 protein spots in the master two-dimensional electrophoresis gel. A set of 59 more abundant and 49 less abundant protein spots that changed their protein abundances in an anaerobiosis-dependent manner was identified and compared to iron- and sulfur-grown cells, respectively. Proteomic analysis detected a significant increase in abundance under anoxic conditions of electron transporters, such as rusticyanin and cytochrome c(552), involved in the ferrous iron oxidation pathway. Therefore we suggest the incorporation of rus-operon encoded proteins in the anaerobic respiration pathway. Two sulfur metabolism proteins were identified, pyridine nucleotide-disulfide oxidoreductase and sulfide-quinone reductase. The important transcription regulator, ferric uptake regulation protein, was anaerobically more abundant. The anaerobic expression of several proteins involved in cell envelope formation indicated a gradual adaptation to elemental sulfur oxidation.


Assuntos
Acidithiobacillus/metabolismo , Proteínas de Bactérias/análise , Compostos Férricos/metabolismo , Compostos Ferrosos/metabolismo , Enxofre/metabolismo , Adaptação Fisiológica , Anaerobiose , Eletroforese em Gel Bidimensional , Cinética , Oxirredução , Proteômica , Espectrometria de Massas em Tandem
11.
Front Bioeng Biotechnol ; 10: 972653, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36159676

RESUMO

Carbon capture and utilization has been proposed as one strategy to combat global warming. Microbial electrolysis cells (MECs) combine the biological conversion of carbon dioxide (CO2) with the formation of valuable products such as methane. This study was motivated by the surprising gap in current knowledge about the utilization of real exhaust gas as a CO2 source for methane production in a fully biocatalyzed MEC. Therefore, two steel mill off-gases differing in composition were tested in a two-chamber MEC, consisting of an organic substrate-oxidizing bioanode and a methane-producing biocathode, by applying a constant anode potential. The methane production rate in the MEC decreased immediately when steel mill off-gas was tested, which likely inhibited anaerobic methanogens in the presence of oxygen. However, methanogenesis was still ongoing even though at lower methane production rates than with pure CO2. Subsequently, pure CO2 was studied for methanation, and the cathodic biofilm successfully recovered from inhibition reaching a methane production rate of 10.8 L m-2d-1. Metagenomic analysis revealed Geobacter as the dominant genus forming the anodic organic substrate-oxidizing biofilms, whereas Methanobacterium was most abundant at the cathodic methane-producing biofilms.

12.
Waste Manag ; 144: 182-190, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35378357

RESUMO

The biological leaching of metals from different waste streams by bacteria is intensively investigated to address metal recycling and circular economy goals. However, usually external addition of sulfuric acid is required to maintain the low pH optimum of the bacteria to ensure efficient leaching. Extremely acidophilic Acidithiobacillus spp. producing sulfuric acid and ferric iron have been investigated for several decades in the bioleaching of metal-containing ores. Their application has now been extended to the extraction of metals from artificial ores and other secondary sources. In this study, an optimized process for producing biogenic sulfuric acid from elemental sulfur by two sulfur-oxidizing species, A. thiooxidans and A. caldus and their combinations, was investigated in batch and stirred tank experiments. Using a combined culture of both species, 1.05 M and 1.4 M biogenic sulfuric acid was produced at 30 °C and 6% elemental sulfur in batch and semi continuous modes, respectively. The acid produced was then used to control the pH in a heap bioleaching system in which iron- and sulfur-oxidizing A. ferrooxidans was applied to biologically leach metals from waste incineration residuals. Metals like Cu, Ni, Al, Mn, and Zn were successfully recovered by 99, 93, 84, 77 and 68%, respectively within three weeks of heap bioleaching. Overall, a potential value recovery of incorporated metals >70% could be achieved. This highlights the potential and novelty of applying extremely acidophilic sulfur-oxidizing bacteria for cheap and efficient production of biogenic sulfuric acid and its use in pH control.


Assuntos
Acidithiobacillus , Incineração , Bactérias , Ferro , Metais , Enxofre , Ácidos Sulfúricos
13.
Nat Commun ; 13(1): 28, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013178

RESUMO

Heatwaves exert disproportionately strong and sometimes irreversible impacts on forest ecosystems. These impacts remain poorly understood at the tree and species level and across large spatial scales. Here, we investigate the effects of the record-breaking 2018 European heatwave on tree growth and tree water status using a collection of high-temporal resolution dendrometer data from 21 species across 53 sites. Relative to the two preceding years, annual stem growth was not consistently reduced by the 2018 heatwave but stems experienced twice the temporary shrinkage due to depletion of water reserves. Conifer species were less capable of rehydrating overnight than broadleaves across gradients of soil and atmospheric drought, suggesting less resilience toward transient stress. In particular, Norway spruce and Scots pine experienced extensive stem dehydration. Our high-resolution dendrometer network was suitable to disentangle the effects of a severe heatwave on tree growth and desiccation at large-spatial scales in situ, and provided insights on which species may be more vulnerable to climate extremes.


Assuntos
Mudança Climática , Desidratação , Ecologia , Florestas , Raios Infravermelhos , Clima , Secas , Ecossistema , Noruega , Picea , Pinus sylvestris , Solo , Árvores , Água
14.
Biosensors (Basel) ; 11(6)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073192

RESUMO

Sustainable technologies for energy production and storage are currently in great demand. Bioelectrochemical systems (BESs) offer promising solutions for both. Several attempts have been made to improve carbon felt electrode characteristics with various pretreatments in order to enhance performance. This study was motivated by gaps in current knowledge of the impact of pretreatments on the enrichment and microbial composition of bioelectrochemical systems. Therefore, electrodes were treated with poly(neutral red), chitosan, or isopropanol in a first step and then fixed in microbial electrolysis cells (MECs). Four MECs consisting of organic substance-degrading bioanodes and methane-producing biocathodes were set up and operated in batch mode by controlling the bioanode at 400 mV vs. Ag/AgCl (3M NaCl). After 1 month of operation, Enterococcus species were dominant microorganisms attached to all bioanodes and independent of electrode pretreatment. However, electrode pretreatments led to a decrease in microbial diversity and the enrichment of specific electroactive genera, according to the type of modification used. The MEC containing isopropanol-treated electrodes achieved the highest performance due to presence of both Enterococcus and Geobacter. The obtained results might help to select suitable electrode pretreatments and support growth conditions for desired electroactive microorganisms, whereby performance of BESs and related applications, such as BES-based biosensors, could be enhanced.


Assuntos
Fontes de Energia Bioelétrica , Biofilmes , Fibra de Carbono , Eletrodos , Carbono , Eletrólise , Geobacter
15.
J Chem Theory Comput ; 17(12): 7696-7711, 2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34735161

RESUMO

We demonstrate that fast and accurate linear force fields can be built for molecules using the atomic cluster expansion (ACE) framework. The ACE models parametrize the potential energy surface in terms of body-ordered symmetric polynomials making the functional form reminiscent of traditional molecular mechanics force fields. We show that the four- or five-body ACE force fields improve on the accuracy of the empirical force fields by up to a factor of 10, reaching the accuracy typical of recently proposed machine-learning-based approaches. We not only show state of the art accuracy and speed on the widely used MD17 and ISO17 benchmark data sets, but we also go beyond RMSE by comparing a number of ML and empirical force fields to ACE on more important tasks such as normal-mode prediction, high-temperature molecular dynamics, dihedral torsional profile prediction, and even bond breaking. We also demonstrate the smoothness, transferability, and extrapolation capabilities of ACE on a new challenging benchmark data set comprised of a potential energy surface of a flexible druglike molecule.

16.
Sci Rep ; 10(1): 7127, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32346005

RESUMO

The role of rotational molecular motors of the ATP synthase class is integral to the metabolism of cells. Yet the function of FliI6-FliJ complex, a homolog of the F1 ATPase motor, within the flagellar export apparatus remains unclear. We use a simple two-state model adapted from studies of linear molecular motors to identify key features of this motor. The two states are the 'locked' ground state where the FliJ coiled coil filament experiences angular fluctuations in an asymmetric torsional potential, and a 'free' excited state in which FliJ undergoes rotational diffusion. Michaelis-Menten kinetics was used to treat transitions between these two states, and obtain the average angular velocity of the unloaded FliJ filament within the FliI6 stator: ωmax ≈ 9.0 rps. The motor was then studied under external counter torque conditions in order to ascertain its maximal power output: Pmax ≈ 42 kBT/s (or 102 kW/mol), and the stall torque: Gstall ≈ 3 kBT/rad (or 0.01 nN·nm/rad). Two modes of action within the flagellar export apparatus are proposed, in which the motor performs useful work either by continuously 'grinding' through the resistive environment of the export gate, or by exerting equal and opposite stall force on it. In both cases, the resistance is provided by flagellin subunits entering the flagellar export channel prior to their unfolding. We therefore propose that the function of the FliI6-FliJ complex is to lower the energy barrier, and therefore assist in unfolding of the flagellar proteins before feeding them into the transport channel.


Assuntos
Proteínas de Bactérias/metabolismo , Flagelina/metabolismo , Desdobramento de Proteína , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/química , Flagelos/metabolismo , Cinética , Conformação Proteica , Transporte Proteico
17.
Front Microbiol ; 11: 610836, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329503

RESUMO

Hydrogen can serve as an electron donor for chemolithotrophic acidophiles, especially in the deep terrestrial subsurface and geothermal ecosystems. Nevertheless, the current knowledge of hydrogen utilization by mesophilic acidophiles is minimal. A multi-omics analysis was applied on Acidithiobacillus ferrooxidans growing on hydrogen, and a respiratory model was proposed. In the model, [NiFe] hydrogenases oxidize hydrogen to two protons and two electrons. The electrons are used to reduce membrane-soluble ubiquinone to ubiquinol. Genetically associated iron-sulfur proteins mediate electron relay from the hydrogenases to the ubiquinone pool. Under aerobic conditions, reduced ubiquinol transfers electrons to either cytochrome aa 3 oxidase via cytochrome bc 1 complex and cytochrome c 4 or the alternate directly to cytochrome bd oxidase, resulting in proton efflux and reduction of oxygen. Under anaerobic conditions, reduced ubiquinol transfers electrons to outer membrane cytochrome c (ferrireductase) via cytochrome bc 1 complex and a cascade of electron transporters (cytochrome c 4, cytochrome c 552, rusticyanin, and high potential iron-sulfur protein), resulting in proton efflux and reduction of ferric iron. The proton gradient generated by hydrogen oxidation maintains the membrane potential and allows the generation of ATP and NADH. These results further clarify the role of extremophiles in biogeochemical processes and their impact on the composition of the deep terrestrial subsurface.

18.
Sci Rep ; 9(1): 11127, 2019 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-31366939

RESUMO

Colicin production in Escherichia coli (E. coli) strains represents an important trait with regard to microbial survival and competition in the complex intestinal environment. A novel colicin type, colicin Z (26.3 kDa), was described as a product of an original producer, extraintestinal E. coli B1356 strain, isolated from the anorectal abscess of a 17 years-old man. The 4,007 bp plasmid (pColZ) was completely sequenced and colicin Z activity (cza) and colicin Z immunity (czi) genes were identified. The cza and czi genes are transcribed in opposite directions and encode for 237 and 151 amino acid-long proteins, respectively. Colicin Z shows a narrow inhibitory spectrum, being active only against enteroinvasive E. coli (EIEC) and Shigella strains via CjrC receptor recognition and CjrB- and ExbB-, ExbD-mediated colicin translocation. All tested EIEC and Shigella strains isolated between the years 1958-2010 were sensitive to colicin Z. The lethal effect of colicin Z was found to be directed against cell wall peptidoglycan (PG) resulting in PG degradation, as revealed by experiments with Remazol Brilliant Blue-stained purified peptidoglycans and with MALDI-TOF MS analyses of treated PG. Colicin Z represents a new class of colicins that is structurally and functionally distinct from previously studied colicin types.


Assuntos
Colicinas/genética , Escherichia coli/genética , Shigella/genética , Adolescente , Sequência de Bases , Humanos , Masculino , Testes de Sensibilidade Microbiana , Plasmídeos/genética
19.
Bioorg Med Chem ; 16(17): 8218-23, 2008 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-18676153

RESUMO

Acetylcholinesterase reactivators are crucial antidotes for the treatment of organophosphate intoxication. Eighteen monoquaternary reactivators of acetylcholinesterase with modified side chain were developed in an effort to extend the properties of pralidoxime. The known reactivators (pralidoxime, HI-6, obidoxime, trimedoxime, methoxime) and the prepared compounds were tested in vitro on a model of tabun- and paraoxon-inhibited AChE. Monoquaternary reactivators were not able to exceed the best known compounds for tabun poisoning, but some of them did show reactivation better or comparable with pralidoxime for paraoxon poisoning. However, extensive differences were found by a SAR study for various side chains on the non-oxime part of the reactivator molecule.


Assuntos
Acetilcolinesterase/efeitos dos fármacos , Ativadores de Enzimas/farmacologia , Modelos Biológicos , Organofosfatos/antagonistas & inibidores , Paraoxon/antagonistas & inibidores , Compostos de Piridínio/farmacologia , Acetilcolinesterase/química , Animais , Encéfalo/enzimologia , Inibidores da Colinesterase/farmacologia , Relação Dose-Resposta a Droga , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Ativação Enzimática/efeitos dos fármacos , Ativadores de Enzimas/síntese química , Ativadores de Enzimas/química , Estrutura Molecular , Organofosfatos/farmacologia , Paraoxon/farmacologia , Compostos de Piridínio/síntese química , Compostos de Piridínio/química , Ratos , Estereoisomerismo , Relação Estrutura-Atividade
20.
Front Microbiol ; 9: 3134, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619202

RESUMO

According to the literature, pyrite (FeS2) oxidation has been previously determined to involve thiosulfate as the first aqueous intermediate sulfur product, which is further oxidized to sulfate. In the present study, pyrite oxidation by Acidithiobacillus ferrooxidans was studied using electrochemical and metabolic approaches in an effort to extend existing knowledge on the oxidation mechanism. Due to the small surface area, the reaction rate of a compact pyrite electrode in the form of polycrystalline pyrite aggregate in A. ferrooxidans suspension was very slow at a spontaneously formed high redox potential. The slow rate made it possible to investigate the oxidation process in detail over a term of 100 days. Using electrochemical parameters from polarization curves and levels of released iron, the number of exchanged electrons per pyrite molecule was estimated. The values close to 14 and 2 electrons were determined for the oxidation with and without bacteria, respectively. These results indicated that sulfate was the dominant first aqueous sulfur species formed in the presence of bacteria and elemental sulfur was predominantly formed without bacteria. The stoichiometric calculations are consistent with high iron-oxidizing activities of bacteria that continually keep the released iron in the ferric form, resulting in a high redox potential. The sulfur entity of pyrite was oxidized to sulfate by Fe3+ without intermediate thiosulfate under these conditions. Cell attachment on the corroded pyrite electrode surface was documented although pyrite surface corrosion by Fe3+ was evident without bacterial participation. Attached cells may be important in initiating the oxidation of the pyrite surface to release iron from the mineral. During the active phase of oxidation of a pyrite concentrate sample, the ATP levels in attached and planktonic bacteria were consistent with previously established ATP content of iron-oxidizing cells. No significant upregulation of three essential genes involved in energy metabolism of sulfur compounds was observed in the planktonic cells, which represented the dominant biomass in the pyrite culture. The study demonstrated the formation of sulfate as the first dissolved sulfur species with iron-oxidizing bacteria under high redox potential conditions. Minor aqueous sulfur intermediates may be formed but as a result of side reactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA