RESUMO
BACKGROUND & AIMS: Gastric cancer is often accompanied by a loss of mucin 6 (MUC6), but its pathogenic role in gastric carcinogenesis remains unclear. METHODS: Muc6 knockout (Muc6-/-) mice and Muc6-dsRED mice were newly generated. Tff1Cre, Golph3-/-, R26-Golgi-mCherry, Hes1flox/flox, Cosmcflox/flox, and A4gnt-/- mice were also used. Histology, DNA and RNA, proteins, and sugar chains were analyzed by whole-exon DNA sequence, RNA sequence, immunohistochemistry, lectin-binding assays, and liquid chromatography-mass spectrometry analysis. Gastric organoids and cell lines were used for in vitro assays and xenograft experiments. RESULTS: Deletion of Muc6 in mice spontaneously causes pan-gastritis and invasive gastric cancers. Muc6-deficient tumor growth was dependent on mitogen-activated protein kinase activation, mediated by Golgi stress-induced up-regulation of Golgi phosphoprotein 3. Glycomic profiling revealed aberrant expression of mannose-rich N-linked glycans in gastric tumors, detected with banana lectin in association with lack of MUC6 expression. We identified a precursor of clusterin as a binding partner of mannose glycans. Mitogen-activated protein kinase activation, Golgi stress responses, and aberrant mannose expression are found in separate Cosmc- and A4gnt-deficient mouse models that lack normal O-glycosylation. Banana lectin-drug conjugates proved an effective treatment for mannose-rich murine and human gastric cancer. CONCLUSIONS: We propose that Golgi stress responses and aberrant glycans are important drivers of and promising new therapeutic targets for gastric cancer.
Assuntos
Camundongos Knockout , Mucina-6 , Neoplasias Gástricas , Animais , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Neoplasias Gástricas/genética , Glicosilação , Humanos , Mucina-6/metabolismo , Mucina-6/genética , Camundongos , Linhagem Celular Tumoral , Carcinogênese/metabolismo , Carcinogênese/genética , Mucosa Gástrica/metabolismo , Mucosa Gástrica/patologia , Fator Trefoil-1/metabolismo , Fator Trefoil-1/genética , Organoides/metabolismo , Complexo de Golgi/metabolismo , Mucinas Gástricas/metabolismo , Modelos Animais de DoençasRESUMO
Muscle regeneration depends on muscle stem cell (MuSC) activity. Myogenic regulatory factors, including myoblast determination protein 1 (MyoD), regulate the fate transition of MuSCs. However, the direct target of MYOD in the process is not completely clear. Using previously established MyoD knock-in (MyoD-KI) mice, we revealed that MyoD targets dual-specificity phosphatase (Dusp) 13 and Dusp27. In Dusp13:Dusp27 double knock-out mice, the ability for muscle regeneration after injury was reduced. Moreover, single-cell RNA sequencing of MyoD-high expressing MuSCs from MyoD-KI mice revealed that Dusp13 and Dusp27 are expressed only in specific populations within MyoD-high MuSCs, which also express Myogenin. Overexpressing Dusp13 in MuSCs causes premature muscle differentiation. Thus, we propose a model where DUSP13 and DUSP27 contribute to the fate transition of MuSCs from proliferation to differentiation during myogenesis.
Assuntos
Diferenciação Celular , Proliferação de Células , Fosfatases de Especificidade Dupla , Proteína MyoD , Animais , Camundongos , Fosfatases de Especificidade Dupla/metabolismo , Fosfatases de Especificidade Dupla/genética , Camundongos Knockout , Desenvolvimento Muscular/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/citologia , Proteína MyoD/metabolismo , Proteína MyoD/genética , Regeneração , Células-Tronco/metabolismo , Células-Tronco/citologiaRESUMO
Antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) is a systemic autoimmune disease pathologically characterized by vascular necrosis with inflammation. During AAV development, activated neutrophils produce reactive oxygen species (ROS), leading to the aberrant formation of neutrophil extracellular traps (NETs) via NETosis and subsequent fibrinoid vascular necrosis. Nuclear factor-erythroid 2-related factor 2 (Nrf2) functions as an intracellular defense system to counteract oxidative stress by providing antioxidant properties. Herein, we explored the role of Nrf2 in the pathogenesis of AAV. The role and mechanism of Nrf2 in ANCA-stimulated neutrophils and subsequent endothelial injury were evaluated in vitro using Nrf2 genetic deletion and Nrf2 activator treatment. In corresponding in vivo studies, the role of Nrf2 in ANCA-transfer AAV and spontaneous AAV murine models was examined. Pharmacological activation of Nrf2 in vitro suppressed ANCA-induced NET formation via the inhibition of ROS. In contrast, NET formation was enhanced in Nrf2-deficient neutrophils. Furthermore, Nrf2 activation protected endothelial cells from ANC-induced NETs-mediated injury. In vivo, Nrf2 activation ameliorated glomerulonephritis in two AAV models by upregulating antioxidants and inhibiting ROS-mediated NETs. Furthermore, Nrf2 activation restrained the expansion of splenic immune cells, including T lymphocytes and limited the infiltration of Th17 cells into the kidney. In contrast, Nrf2 genetic deficiency exacerbated vasculitis in a spontaneous AAV model. Thus, the pathophysiological process in AAV may be downregulated by Nrf2 activation, potentially leading to a new therapeutic strategy by regulating NETosis.
Assuntos
Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos , Modelos Animais de Doenças , Armadilhas Extracelulares , Camundongos Knockout , Fator 2 Relacionado a NF-E2 , Neutrófilos , Peroxidase , Espécies Reativas de Oxigênio , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Armadilhas Extracelulares/imunologia , Armadilhas Extracelulares/metabolismo , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/imunologia , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/patologia , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/genética , Neutrófilos/imunologia , Neutrófilos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Peroxidase/metabolismo , Peroxidase/genética , Camundongos , Humanos , Estresse Oxidativo/imunologia , Camundongos Endogâmicos C57BL , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Glomerulonefrite/imunologia , Glomerulonefrite/patologia , Glomerulonefrite/genética , Glomerulonefrite/metabolismo , Glomerulonefrite/etiologia , Anticorpos Anticitoplasma de Neutrófilos/imunologia , Masculino , Rim/patologia , Rim/imunologia , Transdução de Sinais/imunologiaRESUMO
Multidrug and toxin extrusion protein (MATE/SLC47A) secretes metabolites and xenobiotics into the urine in the proximal tubules of the kidney. Uptake assays have been commonly used for evaluating MATE-mediated transport of new chemical entities in drug development. The purpose of this study was to examine the relationship between in vitro uptake activities by MATEs and the impact of MATE-mediated transport in in vivo renal secretion. In vitro uptake in mouse Mate1 (mMate1)-expressing human embryonic kidney 293 (HEK293) cells and several in vivo parameters from mMate1 knockout and wild-type mice were compared using nine cationic compounds (almotriptan, naratriptan, talinolol, sumatriptan, alogliptin, sitagliptin, rivaroxaban, saxagliptin, and vildagliptin). Compounds that showed statistically significant decrease in secretory clearances with respect to kidney concentrations (CLR,kidney) in mMate1 knockout mice were categorized as in vivo substrates in this study. A good correlation (R2 = 0.637) was observed between the in vitro uptake ratio and the in vivo ratio of CLR,kidney of mMate1 knockout mice and wild-type mice. This study supported the rationale of using an uptake assay to determine whether investigational compounds are the substrate of MATEs and to predict drug-drug interaction risk via renal secretion by MATE from the viewpoint of drug development in pharmaceutical companies. SIGNIFICANCE STATEMENT: We revealed that substrates judged by in vitro experiments using mouse multidrug and toxin extrusion (mMate)1-expressing cells were excreted in urine via mMate1 in vivo, and a good correlation (R2 = 0.637) was observed between in vitro uptake ratio and in vivo ratio of secretory clearance with respect to the kidney concentrations (CLR,kidney) of mMate1 knockout and wild-type mice. This study supported the rationale of using an uptake assay to predict potential human MATE1-mediated drug-drug interaction as a victim.
Assuntos
Rim , Proteínas de Transporte de Cátions Orgânicos , Humanos , Camundongos , Animais , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Células HEK293 , Rim/metabolismo , Túbulos Renais Proximais/metabolismo , Camundongos KnockoutRESUMO
To predict the variation of pharmacological or toxicological effect caused by pharmacokinetic variance, it is important to be able to detect previously unknown and unsuspected enzymes involved in drug metabolism. We investigated the use of proteomic correlation profiling (PCP) as a technique to identify the enzymes involved in metabolism of drugs of concern. By evaluating the metabolic activities of each enzyme (including isoforms of cytochrome P450, uridine 5' diphospho-glucuronosyltransferase, and hydrolases, plus aldehyde oxidase and carbonyl reductase) on their typical substrates using a panel of human liver samples, we were able to show the validity of PCP for this purpose. R or Rs and P values were calculated for the association between the protein abundance profile of each protein and the metabolic rate profile of each typical substrate. For the 18 enzymatic activities examined, 13 of the enzymes reported to be responsible for the reactions had correlation coefficients higher than 0.7 and were ranked first to third. For the remaining five activities, the responsible enzymes had correlation coefficients lower than 0.7 and lower rankings. The reasons for this were diverse, including confounding resulting from low protein abundance ratios, artificially high correlations of other enzymes due to limited sample numbers, the presence of inactive enzyme forms, and genetic polymorphisms. Overall, PCP was able to identify the majority of responsible drug-metabolizing enzymes across several enzyme classes (oxidoreductase, transferase, hydrolase); use of this methodology could allow more timely and accurate identification of unknown drug-metabolizing enzymes. SIGNIFICANCE STATEMENT: Proteomic correlation profiling using samples from individual human donors was proven to be a useful methodology for the identification of enzymes responsible for drug-metabolism. This methodology could accelerate the identification of unknown drug-metabolizing enzymes in the future.
Assuntos
Sistema Enzimático do Citocromo P-450 , Proteômica , Humanos , Sistema Enzimático do Citocromo P-450/metabolismo , Glucuronosiltransferase/metabolismo , Inativação Metabólica , Aldeído Oxidase/metabolismoRESUMO
Nintedanib, which is used to treat idiopathic pulmonary fibrosis and non-small cell lung cancer, is metabolized to a pharmacologically inactive carboxylate derivative, BIBF1202, via hydrolysis and subsequently by glucuronidation to BIBF1202 acyl-glucuronide (BIBF1202-G). Since BIBF1202-G contains an ester bond, it can be hydrolytically cleaved to BIBF1202. In this study, we sought to characterize these metabolic reactions in the human liver and intestine. Nintedanib hydrolysis was detected in human liver microsomes (HLMs) (Clearance [CL int]: 102.8 ± 18.9 µL/min per mg protein) but not in small intestinal preparations. CES1 was suggested to be responsible for nintedanib hydrolysis according to experiments using recombinant hydrolases and hydrolase inhibitors as well as proteomic correlation analysis using 25 individual HLM. BIBF1202 glucuronidation in HLM (3.6 ± 0.3 µL/min per mg protein) was higher than that in human intestinal microsomes (1.5 ± 0.06 µL/min per mg protein). UGT1A1 and gastrointestinal UGT1A7, UGT1A8, and UGT1A10 were able to mediate BIBF1202 glucuronidation. The impact of UGT1A1 on glucuronidation was supported by the finding that liver microsomes from subjects homozygous for the UGT1A1*28 allele showed significantly lower activity than those from subjects carrying the wild-type UGT1A1 allele. Interestingly, BIBF1202-G was converted to BIBF1202 in HLS9 at 70-fold higher rates than the rates of BIBF1202 glucuronidation. An inhibition study and proteomic correlation analysis suggested that ß-glucuronidase is responsible for hepatic BIBF1202-G deglucuronidation. In conclusion, the major metabolic reactions of nintedanib in the human liver and intestine were quantitatively and thoroughly elucidated. This information could be helpful to understand the inter- and intraindividual variability in the efficacy of nintedanib. SIGNIFICANCE STATEMENT: To our knowledge, this is the first study to characterize the enzymes responsible for each step of nintedanib metabolism in the human body. This study found that ß-glucuronidase may contribute to BIBF1202-G deglucuronidation.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Proteômica , Glucuronosiltransferase/metabolismo , Microssomos Hepáticos/metabolismo , Glucuronídeos/metabolismo , Hidrolases/metabolismo , Glucuronidase/metabolismo , CinéticaRESUMO
The proximal tubule plays an important role in the kidney and is a major site of drug interaction and toxicity. Analysis of kidney toxicity via in vitro assays is challenging, because only a few assays that reflect functions of drug transporters in renal proximal tubular epithelial cells (RPTECs) are available. In this study, we aimed to develop a simple and reproducible method for culturing RPTECs by monitoring organic anion transporter 1 (OAT1) as a selection marker. Culturing RPTECs in spherical cellular aggregates increased OAT1 protein expression, which was low in the conventional two-dimensional (2D) culture, to a level similar to that in human renal cortices. By proteome analysis, it was revealed that the expression of representative two proximal tubule markers was maintained and 3D spheroid culture improved the protein expression of approximately 7% of the 139 transporter proteins detected, and the expression of 2.3% of the 4,800 proteins detected increased by approximately fivefold that in human renal cortices. Furthermore, the expression levels of approximately 4,800 proteins in three-dimensional (3D) RPTEC spheroids (for 12 days) were maintained for over 20 days. Cisplatin and adefovir exhibited transporter-dependent ATP decreases in 3D RPTEC spheroids. These results indicate that the 3D RPTEC spheroids developed by monitoring OAT1 gene expression are a simple and reproducible in vitro experimental system with improved gene and protein expressions compared with 2D RPTECs and were more similar to that in human kidney cortices. Therefore, it can potentially be used for evaluating human renal proximal tubular toxicity and drug disposition. SIGNIFICANCE STATEMENT: This study developed a simple and reproducible spheroidal culture method with acceptable throughput using commercially available RPTECs by monitoring OAT1 gene expression. RPTECs cultured using this new method showed improved mRNA/protein expression profiles to those in 2D RPTECs and were more similar to those of human kidney cortices. This study provides a potential in vitro proximal tubule system for pharmacokinetic and toxicological evaluations during drug development.
Assuntos
Rim , Proteína 1 Transportadora de Ânions Orgânicos , Humanos , Rim/metabolismo , Proteína 1 Transportadora de Ânions Orgânicos/genética , Proteína 1 Transportadora de Ânions Orgânicos/metabolismo , Túbulos Renais Proximais/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Expressão Gênica , Células Epiteliais/metabolismoRESUMO
Nabumetone, a nonsteroidal anti-inflammatory prodrug, is converted to a pharmacologically active metabolite, 6-methoxy-2-naphthylacetic acid (6-MNA); however, it is 11-fold more efficiently converted to 4-(6-methoxy-2-naphthyl)butan-2-ol (MNBO) via a reduction reaction in human hepatocytes. The goal of this study was to identify the enzyme(s) responsible for MNBO formation from nabumetone in the human liver. MNBO formation by human liver microsomes (HLM) was 5.7-fold higher than in the liver cytosol. In a panel of 24 individual HLM samples with quantitative proteomics data, the 17ß-hydroxysteroid dehydrogenase 12 (HSD17B12) protein level had the high correlation coefficient (r = 0.80, P < 0.001) among 4457 proteins quantified in microsomal fractions during MNBO formation. Recombinant HSD17B12 expressed in HEK293T cells exhibited prominent nabumetone reductase activity, and the contribution of HSD17B12 to the activity in the HLM was calculated as almost 100%. MNBO formation in HepG2 and Huh7 cells was significantly decreased by the knockdown of HSD17B12. We also examined the role of HSD17B12 in drug metabolism and found that recombinant HSD17B12 catalyzed the reduction reactions of pentoxifylline and S-warfarin, suggesting that HSD17B12 prefers compounds containing a methyl ketone group on the alkyl chain. In conclusion, our study demonstrated that HSD17B12 is responsible for the formation of MNBO from nabumetone. Together with the evidence for pentoxifylline and S-warfarin reduction, this is the first study to report that HSD17B12, which is known to metabolize endogenous compounds, such as estrone and 3-ketoacyl-CoA, plays a role as a drug-metabolizing enzyme.
Assuntos
Pentoxifilina , Humanos , Anti-Inflamatórios não Esteroides , Células HEK293 , Microssomos Hepáticos/metabolismo , Nabumetona/metabolismo , Pentoxifilina/metabolismo , Varfarina/metabolismo , BiocatáliseRESUMO
Microgravity (MG) exposure and motor neuron diseases, such as amyotrophic lateral sclerosis (ALS), lead to motor deficits, including muscle atrophy and loss of neuronal activity. Abnormalities in motor neurons and muscles caused by MG exposure can be recovered by subsequent ground exercise. In contrast, the degeneration that occurs in ALS is irreversible. A common phenotype between MG exposure and ALS pathology is motor system abnormality, but the causes may be different. In this study, to elucidate the motor system that is affected by each condition, we investigated the effects of MG and the human SOD1 ALS mutation on gene expression in various cell types of the mouse ventral lumbar spinal cord, which is rich in motor neurons innervating the lower limb. To identify cell types affected by MG or ALS pathogenesis, we analyzed differentially expressed genes with known cell-type markers, which were determined from previous single-cell studies of the spinal cord in MG-exposed and SOD1G93A mice, an ALS mouse model. Differentially expressed genes were observed in MG mice in various spinal cord cell types, including neurons, microglia, astrocytes, oligodendrocytes, oligodendrocyte precursor cells, meningeal cells/Schwann cells, and vascular cells. We also examined neuronal populations in the spinal cord. Gene expression in putative excitatory and inhibitory neurons changed more than that in cholinergic motor neurons of the spinal cord in both MG and SOD1G93A mice. Many putative neuron types, especially visceral motor neurons, and axon initial segments (AIS) were affected in MG mice. In contrast, the effect on neurons and AIS in SOD1G93A mice was slight at P30 but progressed with aging. Interestingly, changes in dopaminergic system-related genes were specifically altered in the spinal cord of MG mice. These results indicate that MG and ALS pathology in various cell types contribute to motor neuron degeneration. Furthermore, there were more alterations in neurons in MG-exposed mice than in SOD1G93A mice. A large number of differentially expressed genes (DEGs) in MG mice represent more than SOD1G93A mice with ALS pathology. Elucidation of MG pathogenesis may provide more insight into the pathophysiology of neurodegenerative diseases.
Assuntos
Esclerose Lateral Amiotrófica , Ausência de Peso , Esclerose Lateral Amiotrófica/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Neurônios Motores/metabolismo , Medula Espinal/metabolismo , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismoRESUMO
BACKGROUND: Amyloid-ß peptide is well-known as a pathogen of Alzheimer's disease, but its precursor, amyloid-beta precursor protein (APP), remains unexplained 30 years after its discovery. APP has two homologues called amyloid precursor-like protein 1 (APLP1) and amyloid precursor-like protein 2 (APLP2), and shares a similar structural organisation with them and has partially overlapping functions. APP family proteins are essential for survival, shown by the crossbreeding analysis of knockout mice of APP family molecules, including APLP1 and APLP2. APLP2 is known to play the most important role among them, but the molecular metabolism of APLP2 is only partially understood. Here, we analysed ectodomain shedding and γ-secretase cleavage of APLP2 by molecular biological and biochemical techniques. METHOD: We analysed the culture supernatant of HEK293 cells overexpressing APLP2 and human cerebrospinal fluid. For the analysis of secreted APLP2 fragments, we raised the OA603 antibody that reacts with the juxtamembrane domain of APLP2. Substrate cleavage sites were identified by matrix assisted laser desorption/ionisation mass spectrometry. RESULTS: By overexpressing in HEK293 cells, APLP2 undergoes ectodomain shedding at three sites in the extracellular region by α- and ß-secretase-like activity and then is intramembranously cleaved at three sites by γ-secretase. In particular, in shedding, α-secretase-like activity was dominant in HEK cells. Surprisingly, in human cerebrospinal fluid, APLP2-derived metabolic fragments were mainly cleaved by ß-secretase-like activity, not by α-secretase-like activity. Because APP is also mainly cleaved by beta-site amyloid precursor protein cleaving enzyme 1 in neurons and APLP1 is expressed exclusively in neurons, these findings suggest that APP family proteins may play a common role via ß-secretase-like cleavage in the central nerve system. CONCLUSIONS: Thus, these findings may contribute to a better understanding of the role of APP family proteins in Alzheimer's disease.
Assuntos
Doença de Alzheimer , Secretases da Proteína Precursora do Amiloide , Camundongos , Animais , Humanos , Secretases da Proteína Precursora do Amiloide/metabolismo , Doença de Alzheimer/metabolismo , Células HEK293 , Precursor de Proteína beta-Amiloide , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Proteínas do Tecido Nervoso/metabolismoRESUMO
The core 1 structure is the major constituent of mucin-type O-glycans, which are added via glycosylation-a posttranslational modification present on membrane-bound and secretory proteins. Core 1 ß1,3-galactosyltransferase (C1galt1), an enzyme that synthesizes the core 1 structure, requires Cosmc, a C1galt1-specific molecular chaperone, for its enzymatic activity. Since Cosmc-knockout mice exhibit embryonic lethality, the biological role of core 1-derived O-glycans in the adult stage is not fully understood. We generated ubiquitous and inducible CAGCre-ERTM/Cosmc-knockout (iCAG-Cos) mice to investigate the physiological function of core 1-derived O-glycans. The iCAG-Cos mice exhibited a global loss of core 1-derived O-glycans, high mortality, and showed a drastic reduction in weights of the thymus, adipose tissue, and pancreas 10 days after Cosmc deletion. They also exhibited leukocytopenia, thrombocytopenia, severe acute pancreatitis, and atrophy of white and brown adipose tissue, as well as spontaneous gastric ulcers and severe renal dysfunction, which were considered the causes underlying the high mortality of the iCAG-Cos mice. Serological analysis indicated the iCAG-Cos mice have lower blood glucose and total blood protein levels and higher triglyceride, high-density lipoprotein, and total cholesterol levels than the controls. These data demonstrate the importance of core 1-derived O-glycans for homeostatic maintenance in adult mice.
Assuntos
Galactosiltransferases/metabolismo , Chaperonas Moleculares/metabolismo , Polissacarídeos/metabolismo , Doença Aguda , Injúria Renal Aguda , Animais , Glicosilação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mucinas/metabolismo , PancreatiteRESUMO
BACKGROUND: Patients with diabetes are at a higher risk for cognitive decline. Thus, biomarkers that can provide early and simple detection of cognitive decline are required. Neurofilament light chain (NfL) is a cytoskeletal protein that constitutes neural axons. Plasma NfL levels are elevated when neurodegeneration occurs. Here, we investigated whether plasma NfL levels were associated with cognitive decline in patients with type 2 diabetes. METHOD: This study included 183 patients with type 2 diabetes who visited Osaka University Hospital. All participants were tested for cognitive function using the Mini-Mental State Examination (MMSE) and the Rivermead Behavioural Memory Test (RBMT). NfL levels were analysed in the plasma and the relationship between NfL and cognitive function was examined. RESULTS: Lower RBMT-standardized profile scores (SPS) or MMSE scores correlated with higher plasma NfL levels (one-way analysis of variance: MMSE, P = 0.0237; RBMT-SPS, P = 0.0001). Furthermore, plasma NfL levels (ß = -0.34, P = 0.0005) and age (ß = -0.19, P = 0.016) were significantly associated with the RBMT score after multivariable regression adjustment. CONCLUSIONS: Plasma NfL levels were correlated with mild cognitive decline which is detected by the RBMT but not the MMSE in patients with type 2 diabetes. This suggests that plasma NfL levels may provide a valuable clinical tool for identifying mild cognitive decline in patients with diabetes.
Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Diabetes Mellitus Tipo 2 , Biomarcadores , Cognição , Disfunção Cognitiva/psicologia , Diabetes Mellitus Tipo 2/complicações , Humanos , Testes de Estado Mental e DemênciaRESUMO
OBJECTIVES: To investigate the utility of 18F-FDG PET/CT in the diagnostic procedure of IgG4-related disease (IgG4-RD), we analysed the association between quantitative method of 18F-FDG PET/CT and histological findings. METHODS: Twenty-one patients with IgG4-RD in whom 18F-FDG PET/CT was performed at the time of diagnosis were enrolled. Tissue biopsy was performed at 24 sites in 21 patients. To perform quantitative analysis of 18F-FDG PET/CT imaging, the highest standardised uptake value (SUV) of the pixels (SUVmax) and the average SUV (SUVmean) within the biopsied lesion were measured. The SUVmean of the liver was also measured as a reference. RESULTS: The mean age at diagnosis was 64.6±11.9 years, and the median serum IgG4 level was 650 mg/dl. Histological findings were consistent with IgG4-RD (histopathology-positive) at 19 out of 24 sites. Although there was no significant difference in the values of SUVmax between histopathology-positive and histopathology-negative tissues, the values of SUVmean were significantly higher in the histopathology-positive tissue (4.98 and 3.54, respectively p<0.05). The values of SUVmean/liver were also higher in the histopathology-positive tissue (2.17 and 1.52, respectively p<0.05). To establish a cut-off value of SUVmean to determine which of multiple lesions should be biopsied, a ROC curve was constructed. ROC curve analysis indicated SUVmean=4.07 or SUVmean/liver=1.66 as a cut-off value. CONCLUSIONS: Our present study suggested that quantitative analysis of 18F-FDG-PET/CT imaging might be useful for selecting the biopsy site in IgG4-RD. The calculation of SUVmean, not of SUVmax, is important for evaluating IgG4-RD-related lesions in 18F-FDG PET/CT imaging.
Assuntos
Fluordesoxiglucose F18 , Doença Relacionada a Imunoglobulina G4 , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons , Compostos RadiofarmacêuticosRESUMO
INTRODUCTION: Little information is available about the association between vegetable preference and chronic kidney disease. METHODS: This retrospective cohort study included 10,819 university workers in Japan who underwent their annual health checkups between January 2005 and March 2013. According to a question "Do you like vegetables"? with 3 possible answers of "I like vegetables," "I like vegetables somewhat," or "I dislike vegetables," 2,831, 2,249, and 104 male workers and 3,902, 1,648, and 85 female workers were classified into the "like," "somewhat," and "dislike" groups, respectively. An association between vegetable preference and incidence of proteinuria (dipstick urinary protein ≥1+) was assessed using Cox proportional-hazards models adjusted for clinically relevant factors. RESULTS: During the median observational period of 5.0 years, the incidence of proteinuria was observed in 650 (12.7%) male and 789 (14.1%) female workers. Among male workers, the "dislike" group had a significantly higher risk of proteinuria (multivariable-adjusted hazard ratio of "like," "somewhat," and "dislike" groups: 1.00 [reference], 1.05 [0.90-1.23], and 1.59 [1.01-2.50], respectively). Among female workers, vegetable preference was associated with the incidence of proteinuria in a dose-dependent manner (1.00 [reference], 1.20 [1.04-1.40], 1.95 [1.26-3.02], respectively). CONCLUSION: "Do you like vegetables"? was a clinically useful tool to identify subjects vulnerable to proteinuria.
Assuntos
Insuficiência Renal Crônica , Verduras , Feminino , Humanos , Incidência , Masculino , Modelos de Riscos Proporcionais , Proteinúria/epidemiologia , Insuficiência Renal Crônica/epidemiologia , Estudos Retrospectivos , Fatores de RiscoRESUMO
Focal segmental glomerulosclerosis (FSGS) is a common cause of steroid-resistant nephrotic syndrome. Spontaneous remission of FSGS is rare and steroid-resistant FSGS frequently progresses to renal failure. Many inheritable forms of FSGS have been described, caused by mutations in proteins that are important for podocyte function. Here, we show that a basic leucine zipper transcription factor, MafB, protects against FSGS. MAFB expression was found to be decreased in the podocytes of patients with FSGS. Moreover, conditional podocyte-specific MafB-knockout mice developed FSGS with massive proteinuria accompanied by depletion of the slit diaphragm-related proteins (Nphs1 and Magi2), and the podocyte-specific transcription factor Tcf21. These findings indicate that MafB plays a crucial role in the pathogenesis of FSGS. Consistent with this, adriamycin-induced FSGS and attendant proteinuria were ameliorated by MafB overexpression in the podocytes of MafB podocyte-specific transgenic mice. Thus, MafB could be a new therapeutic target for FSGS.
Assuntos
Glomerulosclerose Segmentar e Focal , Síndrome Nefrótica , Podócitos , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Glomerulosclerose Segmentar e Focal/genética , Humanos , Fator de Transcrição MafB/genética , Camundongos , Camundongos Transgênicos , Síndrome Nefrótica/genética , Proteinúria/genética , Proteinúria/prevenção & controleRESUMO
The transcription factor MafB is specifically expressed in macrophages. We have recently demonstrated that MafB is expressed in anti-inflammatory alternatively activated M2 macrophages in vitro. Tumor-associated macrophages (TAMs) are a subset of M2 type macrophages that can promote immunosuppressive activity, induce angiogenesis, and promote tumor cell proliferation. To examine whether MafB express in TAMs, we analyzed green fluorescent protein (GFP) expression in Lewis lung carcinoma tumors of MafB-GFP knock-in heterozygous mice. FACS analysis demonstrated GFP fluorescence in cells positive for macrophage-markers (F4/80, CD11b, CD68, and CD204). Moreover, quantitative RT-PCR analysis with F4/80+GFP+ and F4/80+GFP- sorted cells showed that the GFP-positive macrophages express IL-10, Arg-1, and TNF-α, which were known to be expressed in TAMs. These results indicate that MafB is expressed in TAMs. Furthermore, immunostaining analysis using an anti-MAFB antibody revealed that MAFB is expressed in CD204-and CD68-positive macrophages in human lung cancer samples. In conclusion, MafB can be a suitable marker of TAMs in both mouse and human tumor tissues.
Assuntos
Carcinoma Pulmonar de Lewis/patologia , Neoplasias Pulmonares/patologia , Macrófagos/patologia , Fator de Transcrição MafB/análise , Animais , Biomarcadores Tumorais/análise , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Microambiente TumoralRESUMO
The glomerular filtration barrier is composed of podocytes, glomerular basement membrane, and endothelial cells. Disruption of these structures causes several glomerular injuries, such as focal segmental glomerulosclerosis (FSGS). The surface of podocyte apical membranes is coated by negatively charged sialic acids on core 1-derived mucin-type O-glycans. Here, we aimed to investigate the physiological role of core 1-derived O-glycans in the podocytes using adult mice lacking podocyte-specific core 1-derived O-glycans (iPod-Cos). iPod-Cos mice exhibited early and transient proteinuria with foot process effacements and developed typical FSGS-like disease symptoms. To identify the key molecules responsible for the FSGS-like phenotype, we focused on podocalyxin and podoplanin, which possess mucin-type O-glycans. Expression and localization of podocalyxin did not change in iPod-Cos glomeruli. Besides, western blot analysis revealed significantly lower levels of intact podocalyxin in isolated glomeruli of iPod-Cos mice, and high levels of processed forms in iPod-Cos glomeruli, as compared to that in control glomeruli. Conversely, podoplanin mRNA, and protein levels were lower in iPod-Cos mice than in control mice. These results demonstrated that core 1-derived O-glycan on podocytes is required for normal glomerular filtration and may contribute to the stable expression of podocalyxin and podoplanin.
Assuntos
Glomerulosclerose Segmentar e Focal/etiologia , Podócitos/metabolismo , Polissacarídeos/metabolismo , Proteinúria/complicações , Animais , Linhagem Celular , Galactosiltransferases/metabolismo , Glicoproteínas/metabolismo , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Glomérulos Renais/ultraestrutura , Camundongos Knockout , Mucina-1/metabolismo , ProteóliseRESUMO
Anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) is characterized by necrotizing vasculitis with the presence of pathogenic ANCA. ANCA can potentially cause neutrophil activation and induce neutrophil extracellular traps (NETs), resulting in endothelial damage as well as activation of autoreactive B cells and alternative complement pathway. Recombinant thrombomodulin (rTM) protects the endothelium from vascular injury during disseminated intravascular coagulation, thus we hypothesized that rTM ameliorates necrotizing vasculitis in AAV. In this study, rTM was administered in an experimental AAV rat model. Treatment of experimental AAV rats with rTM improved pulmonary hemorrhage and glomerulonephritis, with a suppression of ANCA production and NETs formation. In addition, in vitro experiments showed that rTM bound to neutrophils via Mac-1 (macrophage-1 antigen) and inhibited ANCA-induced NETs formation accompanied by a suppression of histone citrullination, leading to a protection of the endothelium from NETs toxicity. Additionally, rTM affected lymphocytes leading to the inhibition of pro-inflammatory cytokine/chemokin in PBMC during the antibody production process, which might indirectly be involved in the reduction of pathogenic ANCA. Our data revealed that the rTM could ameliorate autoimmune vasculitis through a combination of different biological mechanisms.
Assuntos
Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/etiologia , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/patologia , Autoimunidade/efeitos dos fármacos , Imunomodulação/efeitos dos fármacos , Proteínas Recombinantes/farmacologia , Trombomodulina , Animais , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/tratamento farmacológico , Linfócitos B/imunologia , Linfócitos B/metabolismo , Biomarcadores , Células Endoteliais/metabolismo , Armadilhas Extracelulares/imunologia , Armadilhas Extracelulares/metabolismo , Humanos , Neutrófilos/imunologia , Neutrófilos/metabolismo , RatosRESUMO
The norepinephrine transporter (NET) is a major target for the evaluation of the cardiac sympathetic nerve system in patients with heart failure and Parkinson's disease. It is also used in the therapeutic applications against certain types of neuroendocrine tumors, as exemplified by the clinically used 123/131I-MIBG as theranostic single-photon emission computed tomography (SPECT) agent. With the development of more advanced positron emission tomography (PET) technology, more radiotracers targeting NET have been reported, with superior temporal and spatial resolutions, along with the possibility of functional and kinetic analysis. More recently, fluorine-18-labelled NET tracers have drawn increasing attentions from researchers, due to their longer radiological half-life relative to carbon-11 (110 min vs. 20 min), reduced dependence on on-site cyclotrons, and flexibility in the design of novel tracer structures. In the heart, certain NET tracers provide integral diagnostic information on sympathetic innervation and the nerve status. In the central nervous system, such radiotracers can reveal NET distribution and density in pathological conditions. Most radiotracers targeting cardiac NET-function for the cardiac application consistent of derivatives of either norepinephrine or MIBG with its benzylguanidine core structure, e.g. 11C-HED and 18F-LMI1195. In contrast, all NET tracers used in central nervous system applications are derived from clinically used antidepressants. Lastly, possible applications of NET as selective tracers over organic cation transporters (OCTs) in the kidneys and other organs controlled by sympathetic nervous system will also be discussed.
Assuntos
Proteínas da Membrana Plasmática de Transporte de Norepinefrina , Tomografia por Emissão de Pósitrons , Radioisótopos de Carbono , Humanos , Cinética , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/metabolismo , Sistema Nervoso Simpático/diagnóstico por imagemRESUMO
There is an urgent need for development of better diagnostic strategies to improve outcomes in patients with invasive pulmonary aspergillosis (IPA). We hypothesized that lung perfusion single-photon emission computed tomography (SPECT) may be more sensitive and specific than computed tomography (CT) of the chest for detection of IPA because it is an angioinvasive pulmonary infection with characteristics that are different from those of bacterial pneumonia. We used SPECT with injection of technetium-99m-labeled macroaggregated albumin ([99mTc]MAA) to measure pulmonary perfusion in noninfected mice, mice with IPA, and mice with bacterial pneumonia. Histopathologic analysis was performed to evaluate the correlation between the perfusion defect and mould invasion. We also attempted to quantitatively evaluate the SPECT images to identify differences in decreased perfusion levels in affected areas in the mouse lung. Histopathologic analysis in the IPA mouse model showed a clear match between areas with a perfusion defect and the presence of mold, indicating that the location of the perfusion defect on a SPECT image reflects angioinvasion of the mould in the lungs. Some of these perfusion defects could be seen before appearance of the infiltrate of CT images. Quantitative analysis confirmed that perfusion in the affected areas was significantly decreased in the IPA model but not in the bacterial pneumonia model (P < .0001). This imaging method may be preferable to the alternative methods presently used to identify the presence of mold in a patient's lungs.