RESUMO
Although human genetic studies have implicated many susceptible genes associated with plasma lipid levels, their physiological and molecular functions are not fully characterized. Here we demonstrate that orphan G protein-coupled receptor 146 (GPR146) promotes activity of hepatic sterol regulatory element binding protein 2 (SREBP2) through activation of the extracellular signal-regulated kinase (ERK) signaling pathway, thereby regulating hepatic very low-density lipoprotein (VLDL) secretion, and subsequently circulating low-density lipoprotein cholesterol (LDL-C) and triglycerides (TG) levels. Remarkably, GPR146 deficiency reduces plasma cholesterol levels substantially in both wild-type and LDL receptor (LDLR)-deficient mice. Finally, aortic atherosclerotic lesions are reduced by 90% and 70%, respectively, in male and female LDLR-deficient mice upon GPR146 depletion. Taken together, these findings outline a regulatory role for the GPR146/ERK axis in systemic cholesterol metabolism and suggest that GPR146 inhibition could be an effective strategy to reduce plasma cholesterol levels and atherosclerosis.
Assuntos
Aterosclerose/metabolismo , Hipercolesterolemia/metabolismo , Receptores Acoplados a Proteínas G/deficiência , Animais , Aterosclerose/sangue , Sequência de Bases , Colesterol/sangue , Dependovirus/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Jejum , Feminino , Hepatócitos/metabolismo , Humanos , Hipercolesterolemia/sangue , Lipoproteínas VLDL/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , RNA Interferente Pequeno/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de LDL/metabolismo , Transdução de Sinais , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Triglicerídeos/sangue , Regulação para CimaRESUMO
The production and secretion of VLDLs (very-low-density lipoproteins) by hepatocytes has a direct impact on liver fat content, as well as the concentrations of cholesterol and triglycerides in the circulation and thus affects both liver and cardiovascular health, respectively. Importantly, insulin resistance, excess caloric intake, and lack of physical activity are associated with overproduction of VLDL, hepatic steatosis, and increased plasma levels of atherogenic lipoproteins. Cholesterol and triglycerides in remnant particles generated by VLDL lipolysis are risk factors for atherosclerotic cardiovascular disease and have garnered increasing attention over the last few decades. Presently, however, increased risk of atherosclerosis is not the only concern when considering today's cardiometabolic patients, as they often also experience hepatic steatosis, a prevalent disorder that can progress to steatohepatitis and cirrhosis. This duality of metabolic risk highlights the importance of understanding the molecular regulation of the biogenesis of VLDL, the lipoprotein that transports triglycerides and cholesterol out of the liver. Fortunately, there has been a resurgence of interest in the intracellular assembly, trafficking, degradation, and secretion of VLDL by hepatocytes, which has led to many exciting new molecular insights that are the topic of this review. Increasing our understanding of the biology of this pathway will aid to the identification of novel therapeutic targets to improve both the cardiovascular and the hepatic health of cardiometabolic patients. This review focuses, for the first time, on this duality.
Assuntos
Doenças Cardiovasculares , Fígado Gorduroso , Humanos , Lipoproteínas , Lipoproteínas VLDL , Triglicerídeos , Fígado/metabolismo , Colesterol/metabolismo , Fígado Gorduroso/metabolismo , Doenças Cardiovasculares/metabolismoRESUMO
BACKGROUND: NAFLD affects nearly 25% of the global population. Cardiovascular disease (CVD) is the most common cause of death among patients with NAFLD, in line with highly prevalent dyslipidemia in this population. Increased plasma triglyceride (TG)-rich lipoprotein (TRL) concentrations, an important risk factor for CVD, are closely linked with hepatic TG content. Therefore, it is of great interest to identify regulatory mechanisms of hepatic TRL production and remnant uptake in the setting of hepatic steatosis. APPROACH AND RESULTS: To identify liver-regulated pathways linking intrahepatic and plasma TG metabolism, we performed transcriptomic analysis of liver biopsies from two independent cohorts of obese patients. Hepatic encoding apolipoprotein F ( APOF ) expression showed the fourth-strongest negatively correlation with hepatic steatosis and the strongest negative correlation with plasma TG levels. The effects of adenoviral-mediated human ApoF (hApoF) overexpression on plasma and hepatic TG were assessed in C57BL6/J mice. Surprisingly, hApoF overexpression increased both hepatic very low density lipoprotein (VLDL)-TG secretion and hepatic lipoprotein remnant clearance, associated a ~25% reduction in plasma TG levels. Conversely, reducing endogenous ApoF expression reduced VLDL secretion in vivo , and reduced hepatocyte VLDL uptake by ~15% in vitro . Transcriptomic analysis of APOF -overexpressing mouse livers revealed a gene signature related to enhanced ApoB-lipoprotein clearance, including increased expression of Ldlr and Lrp1 , among others. CONCLUSION: These data reveal a previously undescribed role for ApoF in the control of plasma and hepatic lipoprotein metabolism by favoring VLDL-TG secretion and hepatic lipoprotein remnant particle clearance.
Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Humanos , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Lipoproteínas/metabolismo , Apolipoproteínas/metabolismo , Apolipoproteínas/farmacologia , Triglicerídeos/metabolismo , Fígado/metabolismo , Lipoproteínas VLDL/metabolismoRESUMO
BACKGROUND AND AIMS: The assembly and secretion of VLDL from the liver, a pathway that affects hepatic and plasma lipids, remains incompletely understood. We set out to identify players in the VLDL biogenesis pathway by identifying genes that are co-expressed with the MTTP gene that encodes for microsomal triglyceride transfer protein, key to the lipidation of apolipoprotein B, the core protein of VLDL. Using human and murine transcriptomic data sets, we identified small leucine-rich protein 1 ( SMLR1 ), encoding for small leucine-rich protein 1, a protein of unknown function that is exclusively expressed in liver and small intestine. APPROACH AND RESULTS: To assess the role of SMLR1 in the liver, we used somatic CRISPR/CRISPR-associated protein 9 gene editing to silence murine Smlr1 in hepatocytes ( Smlr1 -LKO). When fed a chow diet, male and female mice show hepatic steatosis, reduced plasma apolipoprotein B and triglycerides, and reduced VLDL secretion without affecting microsomal triglyceride transfer protein activity. Immunofluorescence studies show that SMLR1 is in the endoplasmic reticulum and Cis-Golgi complex. The loss of hepatic SMLR1 in female mice protects against diet-induced hyperlipidemia and atherosclerosis but causes NASH. On a high-fat, high-cholesterol diet, insulin and glucose tolerance tests did not reveal differences in male Smlr1 -LKO mice versus controls. CONCLUSIONS: We propose a role for SMLR1 in the trafficking of VLDL from the endoplasmic reticulum to the Cis-Golgi complex. While this study uncovers SMLR1 as a player in the VLDL assembly, trafficking, and secretion pathway, it also shows that NASH can occur with undisturbed glucose homeostasis and atheroprotection.
Assuntos
Aterosclerose , Lipoproteínas VLDL , Hepatopatia Gordurosa não Alcoólica , Proteoglicanos Pequenos Ricos em Leucina , Animais , Feminino , Humanos , Masculino , Camundongos , Apolipoproteínas B/sangue , Aterosclerose/sangue , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/prevenção & controle , Leucina , Lipoproteínas VLDL/biossíntese , Lipoproteínas VLDL/sangue , Lipoproteínas VLDL/metabolismo , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteoglicanos Pequenos Ricos em Leucina/genética , Proteoglicanos Pequenos Ricos em Leucina/metabolismo , Triglicerídeos/sangueRESUMO
BACKGROUND: The LDLR (low-density lipoprotein receptor) in the liver is the major determinant of LDL-cholesterol levels in human plasma. The discovery of genes that regulate the activity of LDLR helps to identify pathomechanisms of hypercholesterolemia and novel therapeutic targets against atherosclerotic cardiovascular disease. METHODS: We performed a genome-wide RNA interference screen for genes limiting the uptake of fluorescent LDL into Huh-7 hepatocarcinoma cells. Top hit genes were validated by in vitro experiments as well as analyses of data sets on gene expression and variants in human populations. RESULTS: The knockdown of 54 genes significantly inhibited LDL uptake. Fifteen of them encode for components or interactors of the U2-spliceosome. Knocking down any one of 11 out of 15 genes resulted in the selective retention of intron 3 of LDLR. The translated LDLR fragment lacks 88% of the full length LDLR and is detectable neither in nontransfected cells nor in human plasma. The hepatic expression of the intron 3 retention transcript is increased in nonalcoholic fatty liver disease as well as after bariatric surgery. Its expression in blood cells correlates with LDL-cholesterol and age. Single nucleotide polymorphisms and 3 rare variants of one spliceosome gene, RBM25, are associated with LDL-cholesterol in the population and familial hypercholesterolemia, respectively. Compared with overexpression of wild-type RBM25, overexpression of the 3 rare RBM25 mutants in Huh-7 cells led to lower LDL uptake. CONCLUSIONS: We identified a novel mechanism of posttranscriptional regulation of LDLR activity in humans and associations of genetic variants of RBM25 with LDL-cholesterol levels.
Assuntos
Proteínas Nucleares/metabolismo , Splicing de RNA , Receptores de LDL/genética , Colesterol/metabolismo , Células HEK293 , Células Hep G2 , Humanos , Lipoproteínas LDL/metabolismo , Fígado/metabolismo , Mutação , Proteínas Nucleares/genética , Receptores de LDL/metabolismo , Spliceossomos/metabolismoRESUMO
BACKGROUND: The copper metabolism MURR1 domains/coiled-coil domain containing 22/coiled-coil domain containing 93 (CCC) complex is required for the transport of low-density lipoprotein receptor (LDLR) and LRP1 (LDLR-related protein 1) from endosomes to the cell surface of hepatocytes. Impaired functioning of hepatocytic CCC causes hypercholesterolemia in mice, dogs, and humans. Retriever, a protein complex consisting of subunits VPS26C, VPS35L, and VPS29, is associated with CCC, but its role in endosomal lipoprotein receptor transport is unclear. We here investigated the contribution of retriever to hepatocytic lipoprotein receptor recycling and plasma lipids regulation. METHODS: Using somatic CRISPR/Cas9 gene editing, we generated liver-specific VPS35L or VPS26C-deficient mice. We determined total and surface levels of LDLR and LRP1 and plasma lipids. In addition, we studied the protein levels and composition of CCC and retriever. RESULTS: Hepatocyte VPS35L deficiency reduced VPS26C levels but had minimal impact on CCC composition. VPS35L deletion decreased hepatocytic surface expression of LDLR and LRP1, accompanied by a 21% increase in plasma cholesterol levels. Hepatic VPS26C ablation affected neither levels of VPS35L and CCC subunits, nor plasma lipid concentrations. However, VPS26C deficiency increased hepatic LDLR protein levels by 2-fold, probably compensating for reduced LRP1 functioning, as we showed in VPS26C-deficient hepatoma cells. Upon PCSK9 (proprotein convertase subtilisin/kexin type 9)-mediated LDLR elimination, VPS26C ablation delayed postprandial triglyceride clearance and increased plasma triglyceride levels by 26%. CONCLUSIONS: Our study suggests that VPS35L is shared between retriever and CCC to facilitate LDLR and LRP1 transport from endosomes to the cell surface. Conversely, retriever subunit VPS26C selectively transports LRP1, but not LDLR, and thereby may control hepatic uptake of postprandial triglyceride-rich lipoprotein remnants.
Assuntos
Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Pró-Proteína Convertase 9 , Animais , Humanos , Camundongos , Hepatócitos/metabolismo , Lipoproteínas/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Camundongos Knockout , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/metabolismo , Receptores de LDL , Triglicerídeos/metabolismoRESUMO
BACKGROUND: In mice, GPR146 (G-protein-coupled receptor 146) deficiency reduces plasma lipids and protects against atherosclerosis. Whether these findings translate to humans is unknown. METHODS: Common and rare genetic variants in the GPR146 gene locus were used as research instruments in the UK Biobank. The Lifelines, The Copenhagen-City Heart Study, and a cohort of individuals with familial hypobetalipoproteinemia were used to find and study rare GPR146 variants. RESULTS: In the UK Biobank, carriers of the common rs2362529-C allele present with lower low-density lipoprotein cholesterol, apo (apolipoprotein) B, high-density lipoprotein cholesterol, apoAI, CRP (C-reactive protein), and plasma liver enzymes compared with noncarriers. Carriers of the common rs1997243-G allele, associated with higher GPR146 expression, present with the exact opposite phenotype. The associations with plasma lipids of the above alleles are allele dose-dependent. Heterozygote carriers of a rare coding variant (p.Pro62Leu; n=2615), predicted to be damaging, show a stronger reductions in the above parameters compared with carriers of the common rs2362529-C allele. The p.Pro62Leu variant is furthermore shown to segregate with low low-density lipoprotein cholesterol in a family with familial hypobetalipoproteinemia. Compared with controls, carriers of the common rs2362529-C allele show a marginally reduced risk of coronary artery disease (P=0.03) concomitant with a small effect size on low-density lipoprotein cholesterol (average decrease of 2.24 mg/dL in homozygotes) of this variant. Finally, mendelian randomization analyses suggest a causal relationship between GPR146 gene expression and plasma lipid and liver enzyme levels. CONCLUSIONS: This study shows that carriers of new genetic GPR146 variants have a beneficial cardiometabolic risk profile, but it remains to be shown whether genetic or pharmaceutical inhibition of GPR146 protects against atherosclerosis in humans.
Assuntos
Aterosclerose , Hipobetalipoproteinemias , Animais , Apolipoproteínas B/genética , Aterosclerose/genética , Aterosclerose/prevenção & controle , Proteína C-Reativa , HDL-Colesterol , LDL-Colesterol , Humanos , Hipobetalipoproteinemias/genética , Camundongos , Preparações Farmacêuticas , Receptores Acoplados a Proteínas G/genéticaRESUMO
PURPOSE OF REVIEW: The accumulation of triglyceride-rich lipoproteins (TRLs) in plasma in patients with familial chylomicronaemia syndrome (FCS) or severe hypertriglyceridemia is associated with an increased risk of potentially life-threatening pancreatitis. Elevated TRL levels have also been suggested to contribute to atherosclerotic cardiovascular disease (ASCVD). This review provides the latest progress that has been made in this field of research. RECENT FINDINGS: Apolipoprotein C-III and angiopoietin-like protein 3 play key roles in the metabolism of TRLs. Targeting their production in the liver or their presence in the circulation effectively reduces triglycerides in patients with FCS or severe hypertriglyceridemia. Attempts to reduce triglyceride synthesis in the small intestine have been halted. Early studies with a fibroblast growth factor 21 agonist have shown to reduce plasma triglycerides and hepatic steatosis and improve glucose homeostasis. New drugs have recently been shown to effectively reduce plasma triglycerides which render hope for treating the risk of pancreatitis. Studies that have just been initiated will learn whether this unmet clinical will be met. It is too early to evaluate the potential of these drugs to reduce the risk of atherosclerosis through the reduction of triglycerides.
Assuntos
Aterosclerose , Hipertrigliceridemia , Pancreatite , Apolipoproteína C-III , Aterosclerose/tratamento farmacológico , Humanos , Hipertrigliceridemia/complicações , Hipertrigliceridemia/tratamento farmacológico , Lipoproteínas/metabolismo , Pancreatite/tratamento farmacológico , TriglicerídeosRESUMO
OBJECTIVE: STAP1, encoding for STAP1 (signal transducing adaptor family member 1), has been reported as a candidate gene associated with familial hypercholesterolemia. Unlike established familial hypercholesterolemia genes, expression of STAP1 is absent in liver but mainly observed in immune cells. In this study, we set out to validate STAP1 as a familial hypercholesterolemia gene. Approach and Results: A whole-body Stap1 knockout mouse model (Stap1-/-) was generated and characterized, without showing changes in plasma lipid levels compared with controls. In follow-up studies, bone marrow from Stap1-/- mice was transplanted to Ldlr-/- mice, which did not show significant changes in plasma lipid levels or atherosclerotic lesions. To functionally assess whether STAP1 expression in B cells can affect hepatic function, HepG2 cells were cocultured with peripheral blood mononuclear cells isolated from heterozygotes carriers of STAP1 variants and controls. The peripheral blood mononuclear cells from STAP1 variant carriers and controls showed similar LDLR mRNA and protein levels. Also, LDL (low-density lipoprotein) uptake by HepG2 cells did not differ upon coculturing with peripheral blood mononuclear cells isolated from either STAP1 variant carriers or controls. In addition, plasma lipid profiles of 39 carriers and 71 family controls showed no differences in plasma LDL cholesterol, HDL (high-density lipoprotein) cholesterol, triglycerides, and lipoprotein(a) levels. Similarly, B-cell populations did not differ in a group of 10 STAP1 variant carriers and 10 age- and sex-matched controls. Furthermore, recent data from the UK Biobank do not show association between STAP1 rare gene variants and LDL cholesterol. CONCLUSIONS: Our combined studies in mouse models and carriers of STAP1 variants indicate that STAP1 is not a familial hypercholesterolemia gene.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , LDL-Colesterol/sangue , Hiperlipoproteinemia Tipo II/sangue , Hiperlipoproteinemia Tipo II/genética , Animais , Aterosclerose/sangue , Aterosclerose/genética , Linfócitos B/imunologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Células Hep G2 , Humanos , Lipídeos/sangue , Linfócitos/imunologia , Masculino , Camundongos Knockout , Monócitos/imunologiaRESUMO
AIMS: Genome-wide association studies have previously identified INSIG2 as a candidate gene for plasma low-density lipoprotein cholesterol (LDL-c). However, we suspect a role for CCDC93 in the same locus because of its involvement in the recycling of the LDL-receptor (LDLR). METHODS AND RESULTS: Characterization of the INSIG2 locus was followed by studies in over 107 000 individuals from the general population, the Copenhagen General Population Study and the Copenhagen City Heart Study, for associations of genetic variants with plasma lipids levels, with risk of myocardial infarction (MI) and with cardiovascular mortality. CCDC93 was furthermore studied in cells and mice. The lead variant of the INSIG2 locus (rs10490626) is not associated with changes in the expression of nearby genes but is a part of a genetic block, which excludes INSIG2. This block includes a coding variant in CCDC93 p.Pro228Leu, which is in strong linkage disequilibrium with rs10490626 (r2 > 0.96). In the general population, separately and combined, CCDC93 p.Pro228Leu is dose-dependently associated with lower LDL-c (P-trend 2.5 × 10-6 to 8.0 × 10-9), with lower risk of MI (P-trend 0.04-0.002) and lower risk of cardiovascular mortality (P-trend 0.005-0.004). These results were validated for LDL-c, risk of both coronary artery disease and MI in meta-analyses including from 194 000 to >700 000 participants. The variant is shown to increase CCDC93 protein stability, while overexpression of human CCDC93 decreases plasma LDL-c in mice. Conversely, CCDC93 ablation reduces LDL uptake as a result of reduced LDLR levels at the cell membrane. CONCLUSION: This study provides evidence that a common variant in CCDC93, encoding a protein involved in recycling of the LDLR, is associated with lower LDL-c levels, lower risk of MI and cardiovascular mortality.
Assuntos
Doença da Artéria Coronariana , Infarto do Miocárdio , Proteínas de Transporte Vesicular/genética , Animais , LDL-Colesterol/genética , Estudo de Associação Genômica Ampla , Humanos , Camundongos , Infarto do Miocárdio/genética , Infarto do Miocárdio/prevenção & controle , Receptores de LDL/genéticaRESUMO
LCAT converts free cholesterol to cholesteryl esters in the process of reverse cholesterol transport. Familial LCAT deficiency (FLD) is a genetic disease that was first described by Kaare R. Norum and Egil Gjone in 1967. This report is a summary from a 2017 symposium where Dr. Norum recounted the history of FLD and leading experts on LCAT shared their results. The Tesmer laboratory shared structural findings on LCAT and the close homolog, lysosomal phospholipase A2. Results from studies of FLD patients in Finland, Brazil, Norway, and Italy were presented, as well as the status of a patient registry. Drs. Kuivenhoven and Calabresi presented data from carriers of genetic mutations suggesting that FLD does not necessarily accelerate atherosclerosis. Dr. Ng shared that LCAT-null mice were protected from diet-induced obesity, insulin resistance, and nonalcoholic fatty liver disease. Dr. Zhou presented multiple innovations for increasing LCAT activity for therapeutic purposes, whereas Dr. Remaley showed results from treatment of an FLD patient with recombinant human LCAT (rhLCAT). Dr. Karathanasis showed that rhLCAT infusion in mice stimulates cholesterol efflux and suggested that it could also enhance cholesterol efflux from macrophages. While the role of LCAT in atherosclerosis remains elusive, the consensus is that a continued study of both the enzyme and disease will lead toward better treatments for patients with heart disease and FLD.
Assuntos
Pesquisa Biomédica , Fosfatidilcolina-Esterol O-Aciltransferase/metabolismo , Animais , HumanosRESUMO
BACKGROUND: The importance of protein glycosylation in regulating lipid metabolism is becoming increasingly apparent. We set out to further investigate this by studying patients with type I congenital disorders of glycosylation (CDGs) with defective N-glycosylation. METHODS: We studied 29 patients with the 2 most prevalent types of type I CDG, ALG6 (asparagine-linked glycosylation protein 6)-deficiency CDG and PMM2 (phosphomannomutase 2)-deficiency CDG, and 23 first- and second-degree relatives with a heterozygous mutation and measured plasma cholesterol levels. Low-density lipoprotein (LDL) metabolism was studied in 3 cell models-gene silencing in HepG2 cells, patient fibroblasts, and patient hepatocyte-like cells derived from induced pluripotent stem cells-by measuring apolipoprotein B production and secretion, LDL receptor expression and membrane abundance, and LDL particle uptake. Furthermore, SREBP2 (sterol regulatory element-binding protein 2) protein expression and activation and endoplasmic reticulum stress markers were studied. RESULTS: We report hypobetalipoproteinemia (LDL cholesterol [LDL-C] and apolipoprotein B below the fifth percentile) in a large cohort of patients with type I CDG (mean age, 9 years), together with reduced LDL-C and apolipoprotein B in clinically unaffected heterozygous relatives (mean age, 46 years), compared with 2 separate sets of age- and sex-matched control subjects. ALG6 and PMM2 deficiency led to markedly increased LDL uptake as a result of increased cell surface LDL receptor abundance. Mechanistically, this outcome was driven by increased SREBP2 protein expression accompanied by amplified target gene expression, resulting in higher LDL receptor protein levels. Endoplasmic reticulum stress was not found to be a major mediator. CONCLUSIONS: Our study establishes N-glycosylation as an important regulator of LDL metabolism. Given that LDL-C was also reduced in a group of clinically unaffected heterozygotes, we propose that increasing LDL receptor-mediated cholesterol clearance by targeting N-glycosylation in the LDL pathway may represent a novel therapeutic strategy to reduce LDL-C and cardiovascular disease.
Assuntos
LDL-Colesterol/genética , Glicosilação , Receptores de LDL/metabolismo , Criança , Feminino , Humanos , MasculinoRESUMO
RATIONALE: COMMD (copper metabolism MURR1 domain)-containing proteins are a part of the CCC (COMMD-CCDC22 [coiled-coil domain containing 22]-CCDC93 [coiled-coil domain containing 93]) complex facilitating endosomal trafficking of cell surface receptors. Hepatic COMMD1 inactivation decreases CCDC22 and CCDC93 protein levels, impairs the recycling of the LDLR (low-density lipoprotein receptor), and increases plasma low-density lipoprotein cholesterol levels in mice. However, whether any of the other COMMD members function similarly as COMMD1 and whether perturbation in the CCC complex promotes atherogenesis remain unclear. OBJECTIVE: The main aim of this study is to unravel the contribution of evolutionarily conserved COMMD proteins to plasma lipoprotein levels and atherogenesis. METHODS AND RESULTS: Using liver-specific Commd1, Commd6, or Commd9 knockout mice, we investigated the relation between the COMMD proteins in the regulation of plasma cholesterol levels. Combining biochemical and quantitative targeted proteomic approaches, we found that hepatic COMMD1, COMMD6, or COMMD9 deficiency resulted in massive reduction in the protein levels of all 10 COMMDs. This decrease in COMMD protein levels coincided with destabilizing of the core (CCDC22, CCDC93, and chromosome 16 open reading frame 62 [C16orf62]) of the CCC complex, reduced cell surface levels of LDLR and LRP1 (LDLR-related protein 1), followed by increased plasma low-density lipoprotein cholesterol levels. To assess the direct contribution of the CCC core in the regulation of plasma cholesterol levels, Ccdc22 was deleted in mouse livers via CRISPR/Cas9-mediated somatic gene editing. CCDC22 deficiency also destabilized the complete CCC complex and resulted in elevated plasma low-density lipoprotein cholesterol levels. Finally, we found that hepatic disruption of the CCC complex exacerbates dyslipidemia and atherosclerosis in ApoE3*Leiden mice. CONCLUSIONS: Collectively, these findings demonstrate a strong interrelationship between COMMD proteins and the core of the CCC complex in endosomal LDLR trafficking. Hepatic disruption of either of these CCC components causes hypercholesterolemia and exacerbates atherosclerosis. Our results indicate that not only COMMD1 but all other COMMDs and CCC components may be potential targets for modulating plasma lipid levels in humans.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Aterosclerose/prevenção & controle , LDL-Colesterol/sangue , Proteínas do Citoesqueleto/metabolismo , Endossomos/metabolismo , Receptores de LDL/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Aterosclerose/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular , Colesterol/análise , Cromatografia Líquida de Alta Pressão , Proteínas do Citoesqueleto/genética , Deleção de Genes , Expressão Gênica , Células HEK293 , Células Hep G2 , Humanos , Fígado/química , Fígado/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Masculino , Camundongos , Camundongos Knockout , Transporte Proteico , Triglicerídeos/análise , Proteínas Supressoras de Tumor/metabolismoRESUMO
The importance of protein glycosylation in regulating lipid metabolism is becoming increasingly apparent. We set out to further investigate this by studying the effects of defective glycosylation on plasma lipids in patients with B4GALT1-CDG, caused by a mutation in B4GALT1 with defective N-linked glycosylation. We studied plasma lipids, cholesteryl ester transfer protein (CETP) glyco-isoforms with isoelectric focusing followed by a western blot and CETP activity in three known B4GALT1-CDG patients and compared them with 11 age- and gender-matched, healthy controls. B4GALT1-CDG patients have significantly lowered non-high density lipoprotein cholesterol (HDL-c) and total cholesterol to HDL-c ratio compared with controls and larger HDL particles. Plasma CETP was hypoglycosylated and less active in B4GALT1-CDG patients compared to matched controls. Our study provides insight into the role of protein glycosylation in human lipoprotein homeostasis. The hypogalactosylated, hypo-active CETP found in patients with B4GALT1-CDG indicates a role of protein galactosylation in regulating plasma HDL and LDL. Patients with B4GALT1-CDG have large HDL particles probably due to hypogalactosylated, hypo-active CETP.
Assuntos
Proteínas de Transferência de Ésteres de Colesterol/metabolismo , HDL-Colesterol/metabolismo , LDL-Colesterol/metabolismo , Defeitos Congênitos da Glicosilação/genética , Galactosiltransferases/genética , Adolescente , Estudos de Casos e Controles , Criança , Pré-Escolar , Proteínas de Transferência de Ésteres de Colesterol/genética , Defeitos Congênitos da Glicosilação/metabolismo , Feminino , Glicosilação , Homozigoto , Humanos , Lactente , Masculino , MutaçãoRESUMO
Aims: The E3-ligase CBL-B (Casitas B-cell lymphoma-B) is an important negative regulator of T cell activation that is also expressed in macrophages. T cells and macrophages mediate atherosclerosis, but their regulation in this disease remains largely unknown; thus, we studied the function of CBL-B in atherogenesis. Methods and results: The expression of CBL-B in human atherosclerotic plaques was lower in advanced lesions compared with initial lesions and correlated inversely with necrotic core area. Twenty weeks old Cblb-/-Apoe-/- mice showed a significant increase in plaque area in the aortic arch, where initial plaques were present. In the aortic root, a site containing advanced plaques, lesion area rose by 40%, accompanied by a dramatic change in plaque phenotype. Plaques contained fewer macrophages due to increased apoptosis, larger necrotic cores, and more CD8+ T cells. Cblb-/-Apoe-/- macrophages exhibited enhanced migration and increased cytokine production and lipid uptake. Casitas B-cell lymphoma-B deficiency increased CD8+ T cell numbers, which were protected against apoptosis and regulatory T cell-mediated suppression. IFNγ and granzyme B production was enhanced in Cblb-/-Apoe-/- CD8+ T cells, which provoked macrophage killing. Depletion of CD8+ T cells in Cblb-/-Apoe-/- bone marrow chimeras rescued the phenotype, indicating that CBL-B controls atherosclerosis mainly through its function in CD8+ T cells. Conclusion: Casitas B-cell lymphoma-B expression in human plaques decreases during the progression of atherosclerosis. As an important regulator of immune responses in experimental atherosclerosis, CBL-B hampers macrophage recruitment and activation during initial atherosclerosis and limits CD8+ T cell activation and CD8+ T cell-mediated macrophage death in advanced atherosclerosis, thereby preventing the progression towards high-risk plaques.
Assuntos
Aterosclerose/etiologia , Linfócitos T CD8-Positivos/imunologia , Linfoma de Células B/complicações , Macrófagos/patologia , Proteína Oncogênica v-cbl/metabolismo , Placa Aterosclerótica/etiologia , Animais , Apoptose , Aterosclerose/metabolismo , Aterosclerose/patologia , Modelos Animais de Doenças , Humanos , Linfoma de Células B/metabolismo , Linfoma de Células B/patologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologiaRESUMO
BACKGROUND: Atherosclerosis starts in childhood but low-density lipoprotein cholesterol (LDL-C), a causal risk factor, is mostly studied and dealt with when clinical events have occurred. Women are usually affected later in life than men and are underdiagnosed, undertreated, and understudied in cardiovascular trials and research. This study aims at a better understanding of lifestyle and genetic factors that affect LDL-C in young women. METHODS: We randomly selected for every year of age 8 women with LDL-C ≤1st percentile (≤50 mg/dL) and 8 women with LDL-C ≥99th percentile (≥186 mg/dL) from 28 000 female participants aged between 25 to 40 years of a population-based cohort study. The resulting groups include 119 and 121 women, respectively, of an average 33 years of age. A gene-sequencing panel was used to assess established monogenic and polygenic origins of these phenotypes. Information on lifestyle was extracted from questionnaires. A healthy lifestyle score was allocated based on a recently developed algorithm. RESULTS: Of the women with LDL-C ≤1st percentile, 19 (15.7%) carried mutations that are causing monogenic hypocholesterolemia and 60 (49.6%) were genetically predisposed to low LDL-C on the basis of an extremely low weighted genetic risk score. In comparison with control groups, a healthier lifestyle was not associated with low LDL-C in women without genetic predispositions. Among women with LDL-C ≥99th percentile, 20 women (16.8%) carried mutations that cause familial hypercholesterolemia, whereas 25 (21%) were predisposed to high LDL-C on the basis of a high-weighted genetic risk score. The women in whom no genetic origin for hypercholesterolemia could be identified were found to exhibit a significantly unfavorable lifestyle in comparison with controls. CONCLUSIONS: This study highlights the need for early assessment of the cardiovascular risk profile in apparently healthy young women to identify those with LDL-C ≥99th percentile for their age: first, because, in this study, 17% of the cases were molecularly diagnosed with familial hypercholesterolemia, which needs further attention; second, because our data indicate that an unfavorable lifestyle is significantly associated with severe hypercholesterolemia in genetically unaffected women, which may also need further attention.
Assuntos
Algoritmos , Aterosclerose/genética , LDL-Colesterol/genética , Hipercolesterolemia/genética , Estilo de Vida , Adulto , Aterosclerose/sangue , LDL-Colesterol/sangue , Feminino , Humanos , Hipercolesterolemia/sangue , Fatores de RiscoRESUMO
BACKGROUND: Lecithin:cholesterol acyltransferase (LCAT) is the sole enzyme that esterifies cholesterol in plasma. Its role in the supposed protection from atherogenesis remains unclear because mutations in LCAT causing fish-eye disease (FED) or familial LCAT deficiency (FLD) have been reported to be associated with more or instead less carotid atherosclerosis, respectively. This discrepancy may be associated with the loss of cholesterol esterification on only apolipoprotein AI (FED) or on both apolipoprotein AI- and apolipoprotein B-containing lipoproteins (FLD), an aspect that has thus far not been investigated. METHODS: Seventy-four heterozygotes for LCAT mutations recruited from Italy and the Netherlands were assigned to FLD (n=33) or FED (n=41) groups and compared with 280 control subjects. Subclinical atherosclerosis was assessed with carotid intima-media thickness. RESULTS: Compared with control subjects, total cholesterol was lower by 16% (-32.9 mg/dL) and 7% (-14.9 mg/dL) and high-density lipoprotein cholesterol was lower by 29% (-16.7 mg/dL) and 36% (-20.7 mg/dL) in the FLD and FED groups, respectively. Subjects with FLD displayed a significant 18% lower low-density lipoprotein cholesterol compared with subjects with FED (101.9±35.0 versus 123.6±47.4 mg/dL; P=0.047) and control subjects (122.6±35.0 mg/dL; P=0.003). Remarkably, all 3 intima-media thickness parameters were lower in subjects with FLD compared with FED and control subjects (accounting for age, sex, body mass index, smoking, hypertension, family history of cardiovascular disease, and plasma lipids). After additional correction for nationality and ultrasonographic methods, average and maximum intima-media thickness remained significantly lower when subjects with FLD were compared with those with FED (0.59 versus 0.73 mm, P=0.003; and 0.87 versus 1.24 mm, P<0.001, respectively). In contrast, the common carotid intima-media thickness (corrected for age, sex, body mass index, smoking, hypertension, family history of cardiovascular disease, and plasma lipids) was higher in subjects with FED compared with control subjects (0.69 versus 0.65 mm; P=0.05), but this significance was lost after adjustment for nationality and ultrasonographic machine. CONCLUSIONS: In this head-to-head comparison, FLD and FED mutations were shown to be associated with decreased and increased atherosclerosis, respectively. We propose that this discrepancy is related to the capacity of LCAT to generate cholesterol esters on apolipoprotein B-containing lipoproteins. Although this capacity is lost in FLD, it is unaffected in FED. These results are important when considering LCAT as a target to decrease atherosclerosis.
Assuntos
Doenças das Artérias Carótidas/etiologia , Deficiência da Lecitina Colesterol Aciltransferase/genética , Mutação , Fosfatidilcolina-Esterol O-Aciltransferase/genética , Adulto , Doenças das Artérias Carótidas/diagnóstico por imagem , Espessura Intima-Media Carotídea , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Feminino , Marcadores Genéticos , Predisposição Genética para Doença , Heterozigoto , Homozigoto , Humanos , Itália , Deficiência da Lecitina Colesterol Aciltransferase/complicações , Deficiência da Lecitina Colesterol Aciltransferase/diagnóstico , Deficiência da Lecitina Colesterol Aciltransferase/enzimologia , Masculino , Pessoa de Meia-Idade , Países Baixos , Fenótipo , Fosfatidilcolina-Esterol O-Aciltransferase/metabolismo , Medição de Risco , Fatores de RiscoRESUMO
RATIONALE & OBJECTIVE: Lecithin-cholesterol acyltransferase (LCAT) catalyzes the maturation of high-density lipoprotein. Homozygosity for loss-of-function mutations causes familial LCAT deficiency (FLD), characterized by corneal opacities, anemia, and renal involvement. This study sought to characterize kidney biopsy findings and clinical outcomes in a family with FLD. STUDY DESIGN: Prospective observational study. SETTING & PARTICIPANTS: 2 (related) index patients with clinically apparent FLD were initially identified. 110 of 122 family members who consented to genetic analysis were also studied. PREDICTORS: Demographic and laboratory parameters (including lipid profiles and LCAT activity) and full sequence analysis of the LCAT gene. Kidney histologic examination was performed with samples from 6 participants. OUTCOMES: Cardiovascular and renal events during a median follow-up of 12 years. Estimation of annual rate of decline in glomerular filtration rate. ANALYTICAL APPROACH: Analysis of variance, linear regression analysis, and Fine-Gray competing-risk survival analysis. RESULTS: 9 homozygous, 57 heterozygous, and 44 unaffected family members were identified. In all affected individuals, full sequence analysis of the LCAT gene revealed a mutation (c.820C>T) predicted to cause a proline to serine substitution at amino acid 274 (P274S). Homozygosity caused a complete loss of LCAT activity. Kidney biopsy findings demonstrated lipid deposition causing glomerular basement membrane thickening, mesangial expansion, and "foam-cell" infiltration of kidney tissue. Tubular atrophy, glomerular sclerosis, and complement fixation were associated with worse kidney outcomes. Estimated glomerular filtration rate deteriorated among homozygous family members at an average annual rate of 3.56 mL/min/1.73 m2. The incidence of cardiovascular and renal complications was higher among homozygous family members compared with heterozygous and unaffected members. Mild thrombocytopenia was a common finding among homozygous participants. LIMITATIONS: The presence of cardiovascular disease was mainly based on medical history. CONCLUSIONS: The P274S LCAT mutation was found to cause FLD with renal involvement. Tubular atrophy, glomerular sclerosis, and complement fixation were associated with a worse renal prognosis.
Assuntos
Nefropatias/diagnóstico , Nefropatias/genética , Deficiência da Lecitina Colesterol Aciltransferase/diagnóstico , Deficiência da Lecitina Colesterol Aciltransferase/genética , Mutação/genética , Fosfatidilcolina-Esterol O-Aciltransferase/genética , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos ProspectivosRESUMO
OBJECTIVE: Studies into the role of LRP1 (low-density lipoprotein receptor-related protein 1) in human lipid metabolism are scarce. Although it is known that a common variant in LRP1 (rs116133520) is significantly associated with HDL-C (high-density lipoprotein cholesterol), the mechanism underlying this observation is unclear. In this study, we set out to study the functional effects of 2 rare LRP1 variants identified in subjects with extremely low HDL-C levels. APPROACH AND RESULTS: In 2 subjects with HDL-C below the first percentile for age and sex and moderately elevated triglycerides, we identified 2 rare variants in LRP1: p.Val3244Ile and p.Glu3983Asp. Both variants decrease LRP1 expression and stability. We show in a series of translational experiments that these variants culminate in reduced trafficking of ABCA1 (ATP-binding cassette A1) to the cell membrane. This is accompanied by an increase in cell surface expression of SR-B1 (scavenger receptor class B type 1). Combined these effects may contribute to low HDL-C levels in our study subjects. Supporting these findings, we provide epidemiological evidence that rs116133520 is associated with apo (apolipoprotein) A1 but not with apoB levels. CONCLUSIONS: This study provides the first evidence that rare variants in LRP1 are associated with changes in human lipid metabolism. Specifically, this study shows that LRP1 may affect HDL metabolism by virtue of its effect on both ABCA1 and SR-B1.
Assuntos
Transportador 1 de Cassete de Ligação de ATP/metabolismo , HDL-Colesterol/metabolismo , Fibroblastos/metabolismo , Variação Genética , Hipoalfalipoproteinemias/sangue , Hipoalfalipoproteinemias/genética , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Receptores Depuradores Classe B/metabolismo , Apolipoproteína A-I/sangue , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Predisposição Genética para Doença , Células HEK293 , Humanos , Hipoalfalipoproteinemias/diagnóstico , Fígado/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Fenótipo , Estudos Prospectivos , Estabilidade Proteica , Transporte Proteico , Triglicerídeos/sangueRESUMO
Hypercholesterolemia is characterized by high plasma LDL cholesterol and often caused by genetic mutations in LDL receptor (LDLR), APOB, or proprotein convertase subtilisin/kexin type 9 (PCSK9). However, a substantial proportion of hypercholesterolemic subjects do not have any mutations in these canonical genes, leaving the underlying pathobiology to be determined. In this study, we investigated to determine whether combining plasma metabolomics with genetic information increases insight in the biology of hypercholesterolemia. For this proof of concept study, we combined plasma metabolites from 119 hypercholesterolemic females with genetic information on the LDL canonical genes. Using hierarchical clustering, we identified four subtypes of hypercholesterolemia, which could be distinguished along two axes represented by triglyceride and large LDL particle concentration. Subjects with mutations in LDLR or APOB preferentially clustered together, suggesting that patients with defects in the LDLR pathway show a distinctive metabolomics profile. In conclusion, we show the potential of using metabolomics to segregate hypercholesterolemic subjects into different clusters, which may help in targeting genetic analysis.