Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Chem Soc Rev ; 53(7): 3327-3349, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38391026

RESUMO

Microbial rhodopsin (MRs) ion channels and pumps have become invaluable optogenetic tools for neuroscience as well as biomedical applications. Recently, MR-optogenetics expanded towards subcellular organelles opening principally new opportunities in optogenetic control of intracellular metabolism and signaling via precise manipulations of organelle ion gradients using light. This new optogenetic field expands the opportunities for basic and medical studies of cancer, cardiovascular, and metabolic disorders, providing more detailed and accurate control of cell physiology. This review summarizes recent advances in studies of the cellular metabolic processes and signaling mediated by optogenetic tools targeting mitochondria, endoplasmic reticulum (ER), lysosomes, and synaptic vesicles. Finally, we discuss perspectives of such an optogenetic approach in both fundamental and applied research.


Assuntos
Optogenética , Rodopsinas Microbianas , Rodopsinas Microbianas/genética , Transdução de Sinais
2.
Biochem Biophys Res Commun ; 693: 149340, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38141525

RESUMO

In addition to the well-known monomeric globular (G-actin) and polymeric fibrillar (F-actin) forms, actin can exist in the so-called inactivated form (I-actin). Hsp70 chaperon, prefoldin, and CCT chaperonin are required to obtain native globular state. In contrast, I-actin is spontaneously formed in the absence of intracellular folding machinery. I-actin can be obtained from G-actin by elimination of divalent ion, incubation in presence of small concentrations of denaturants, and by heat exposure. Since G-actin is a quasi-stationary, thermodynamically unstable form, it can gradually transform into inactivated state in the absence of chelating/denaturating agents or heat exposure, but the transition is much slower. I-actin was shown to associate into oligomers up to the molecular weight of 14-16 G-actin monomers, though the structure of these oligomers remains uncharacterized. This study employs small-angle X-ray scattering to reveal novel insights into the oligomerization process of such spontaneously formed inactivated actin. These oligomers are differentiated from F-actin through comparative analysis, highlighting a unique oligomerization pathway.


Assuntos
Actinas , Dobramento de Proteína , Actinas/metabolismo , Raios X , Proteínas de Choque Térmico HSP70/metabolismo , Quelantes
3.
Int J Mol Sci ; 24(13)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37445905

RESUMO

F-type ATP synthases play a key role in oxidative and photophosphorylation processes generating adenosine triphosphate (ATP) for most biochemical reactions in living organisms. In contrast to the mitochondrial FOF1-ATP synthases, those of chloroplasts are known to be mostly monomers with approx. 15% fraction of oligomers interacting presumably non-specifically in a thylakoid membrane. To shed light on the nature of this difference we studied interactions of the chloroplast ATP synthases using small-angle X-ray scattering (SAXS) method. Here, we report evidence of I-shaped dimerization of solubilized FOF1-ATP synthases from spinach chloroplasts at different ionic strengths. The structural data were obtained by SAXS and demonstrated dimerization in response to ionic strength. The best model describing SAXS data was two ATP-synthases connected through F1/F1' parts, presumably via their δ-subunits, forming "I" shape dimers. Such I-shaped dimers might possibly connect the neighboring lamellae in thylakoid stacks assuming that the FOF1 monomers comprising such dimers are embedded in parallel opposing stacked thylakoid membrane areas. If this type of dimerization exists in nature, it might be one of the pathways of inhibition of chloroplast FOF1-ATP synthase for preventing ATP hydrolysis in the dark, when ionic strength in plant chloroplasts is rising. Together with a redox switch inserted into a γ-subunit of chloroplast FOF1 and lateral oligomerization, an I-shaped dimerization might comprise a subtle regulatory process of ATP synthesis and stabilize the structure of thylakoid stacks in chloroplasts.


Assuntos
Trifosfato de Adenosina , ATPases Translocadoras de Prótons , ATPases Translocadoras de Prótons/metabolismo , Trifosfato de Adenosina/metabolismo , Espalhamento a Baixo Ângulo , Difração de Raios X , Cloroplastos/metabolismo , Óxido Nítrico Sintase/metabolismo , Polímeros/metabolismo
4.
Biochem Biophys Res Commun ; 520(1): 136-139, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31582209

RESUMO

This work focuses on the study of multimeric alpha-lactalbumin oleic acid and lactoferrin oleic acid complexes. The purpose of the research is to study possible mechanisms involved in their pro-apoptotic activities, as seen in some tumor cell cultures. Complexes featuring oleic acid (OA) with human alpha-lactalbumin (hAl) or with bovine alpha-lactalbumin (bAl), and human lactoferrin (hLf) were investigated using small-angle neutron scattering (SANS). It was shown that while alpha-lactalbumin protein complexes were formed on the surface of polydisperse OA micelles, the lactoferrin complexes comprised a monodisperse system of nanoscale particles. Both hAl and hLf complexes appeared to interact with the chromatin of isolated nuclei affecting chromatin structural organization. The possible roles of these processes in the specific anti-tumor activity of these complexes are discussed.


Assuntos
Núcleo Celular/química , Cromatina/química , Lactalbumina/química , Lactoferrina/química , Micelas , Ácido Oleico/química , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Bovinos , Células HeLa , Humanos , Ácidos Oleicos/química , Espalhamento a Baixo Ângulo
5.
Phys Chem Chem Phys ; 21(18): 9317-9325, 2019 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-30994132

RESUMO

The structure of aqueous propylamine mixtures is investigated through X-ray and neutron scattering experiments, and the scattered intensities compared with computer simulation data. Both sets of data show a prominent scattering pre-peak, which first appears at propylamine mole fraction x ≥ 0.1 around scattering vector k ≈ 0.2 Å-1, and evolves towards k ≈ 0.8 Å-1 for neat propylamine x = 1. The existence of a scattering pre-peak in this mixture is unexpected, specifically in view of its absence in aqueous 1-propanol or aqueous DMSO mixtures. The detailed analysis of the various atom-atom structure factors and snapshots indicates that significant micro-structures exist, which produces correlation pre-peaks in the atom-atom structure factors, positive for like species atom correlations and negative for cross species correlations. The scattering pre-peak depends on how these two contributions cancel out or not. The way the amine group bonds with water produces a pre-peak through an imbalance of the positive and negative scattering contributions, unlike 1-propanol and DMSO, where these 2 contributions compensate exactly. Hence molecular simulations demonstrate how chemical details influence the microscopic segregation in different types of molecular emulsions and can be detected or not by scattering experiments.

6.
Phys Chem Chem Phys ; 21(24): 12748-12762, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31168550

RESUMO

Small-angle scattering (SAS) of X-rays, neutrons or light from ensembles of randomly oriented and placed deterministic fractal structures is studied theoretically. In the standard analysis, a very few parameters can be determined from SAS data: the fractal dimension, and the lower and upper limits of the fractal range. The self-similarity of deterministic structures allows one to obtain additional characteristics of their spatial structures. In the present work, we consider models that can describe accurately SAS from such structures. The developed models of deterministic fractals offer many advantages in describing fractal systems, including the possibility to extract additional structural information, an analytic description of SAS intensity, and effective computational algorithms. The generalized Cantor fractal and few of its variants are used as basic examples to illustrate the above concepts and to model physical samples with mass, surface, and multi-fractal structures. The differences between the deterministic and random fractal structures in analyzing SAS data are emphasized. Several limitations are identified in order to motivate future investigations of deterministic fractal structures.

7.
Langmuir ; 34(6): 2332-2343, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29338255

RESUMO

To identify the key stages in the amyloid fibril formation we studied the aggregation of amyloidogenic fragments of Aß peptide, Aß(16-25), Aß(31-40), and Aß(33-42), using the methods of electron microscopy, X-ray analysis, mass spectrometry, and structural modeling. We have found that fragments Aß(31-40) and Aß(33-42) form amyloid fibrils in the shape of bundles and ribbons, while fragment Aß(16-25) forms only nanofilms. We are the first who performed 2D reconstruction of amyloid fibrils by the Markham rotation technique on electron micrographs of negatively stained fragments of Aß peptide. Combined analysis of the data allows us to speculate that both the fibrils and the films are formed via association of ring-shaped oligomers with the external diameter of about 6 to 7 nm, the internal diameter of 2 to 3 nm, and the height of ∼3 nm. We conclude that such oligomers are the main building blocks in fibrils of any morphology. The interaction of ring oligomers with each other in different ways makes it possible to explain their polymorphism. The new mechanism of polymerization of amyloidogenic proteins and peptides, described here, could stimulate new approaches in the development of future therapeutics for the treatment of amyloid-related diseases.


Assuntos
Peptídeos beta-Amiloides/química , Amiloide/química , Fragmentos de Peptídeos/química , Microscopia Eletrônica , Estrutura Secundária de Proteína
8.
Soft Matter ; 14(23): 4792-4804, 2018 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-29808227

RESUMO

Incorporation of polymer chains into wormlike surfactant micelles, which find a large range of applications, offers the opportunity to modify their structure and properties. In this paper, using spectroscopic, scattering and rheological techniques and computer simulations, we study the incorporation of poly(4-vinylpyridine) of two different molecular weights (MWs) into entangled networks of wormlike surfactant micelles of potassium oleate. Using NMR-spectroscopy we show that, independent of its MW, the polymer incorporates into the core-corona interface of the surfactant micelles. According to SANS data, the polymer does not alter the micelle structure or the micelle radius, but diminishes the packing density of the surfactant. At the same time, rheology reveals a stark difference between the surfactant networks with embedded polymers of different MWs. Networks with the higher-MW polymer possess larger viscosity and a longer relaxation time, which we attribute to the larger length of the hybrid micelles. Moreover, we demonstrate that in an intermediate concentration range the higher-MW polymer is able to link neighbouring surfactant micelles together, which has never been previously observed. However, with a further increase in polymer content the micelles become smaller due to the high breaking susceptibility of the boundaries of polymer-containing sections, leading to the stabilization of micellar end-caps by the embedded macromolecules. This process is more prominent in the case of the shorter polymer. Our finding that an increased MW of macromolecules permits the formation of longer hybrid micelles and enhances their rheological properties is of obvious importance for the fundamental understanding of polymer-surfactant interactions and the development of new industrial formulations based on hybrid polymer-wormlike surfactant micelles.

9.
Phys Chem Chem Phys ; 19(3): 2261-2268, 2017 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-28054690

RESUMO

The small-angle scattering (SAS) from the Cantor surface fractal on the plane and Koch snowflake is considered. We develop the construction algorithm for the Koch snowflake, which makes possible the recurrence relation for the scattering amplitude. The surface fractals can be decomposed into a sum of surface mass fractals for arbitrary fractal iteration, which enables various approximations for the scattering intensity. It is shown that for the Cantor fractal, one can neglect with good accuracy the correlations between the mass fractal amplitudes, while for the Koch snowflake, these correlations are important. It is shown that nevertheless, correlations can be built in the mass fractal amplitudes, which explains the decay of the scattering intensity I(q) ∼ qDs-4, with 1 < Ds < 2 being the fractal dimension of the perimeter. The curve I(q)q4-Ds is found to be log-periodic in the fractal region with a period equal to the scaling factor of the fractal. The log-periodicity arises from the self-similarity of the sizes of basic structural units rather than from correlations between their distances. A recurrence relation is obtained for the radius of gyration of the Koch snowflake, which is solved in the limit of infinite iterations. The present analysis allows us to obtain additional information from SAS data, such as the edges of the fractal regions, the fractal iteration number and the scaling factor.

10.
Langmuir ; 30(13): 3705-14, 2014 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-24617576

RESUMO

In this article, we investigate the effect of hydrocarbon addition on the rheological properties and structure of wormlike micellar solutions of potassium oleate. We show that a viscoelastic solution of entangled micellar chains is extremely responsive to hydrocarbons-the addition of only 0.5 wt % n-dodecane results in a drastic drop in viscosity by up to 5 orders of magnitude, which is due to the complete disruption of micelles and the formation of microemulsion droplets. We study the whole range of the transition of wormlike micelles into microemulsion droplets and discover that it can be divided into three regions: (i) in the first region, the solutions retain a high viscosity (∼10-350 Pa·s), the micelles are entangled but their length is reduced by the solubilization of hydrocarbons; (ii) in the second region, the system transitions to the unentangled regime and the viscosity sharply decreases as a result of further micelle shortening and the appearance of microemulsion droplets; (iii) in the third region, the viscosity is low (∼0.001 Pa·s) and only microemulsion droplets remain in the solution. The experimental studies were accompanied by theoretical considerations, which allowed us to reveal for the first time that (i) one of the leading mechanisms of micelle shortening is the preferential accumulation of the solubilized hydrocarbon in the spherical end caps of wormlike micelles, which makes the end caps thermodynamically more favorable; (ii) the onset of the sharp drop in viscosity is correlated with the crossover from the entangled to unentangled regime of the wormlike micellar solution taking place upon the shortening of micellar chains; and (iii) in the unentangled regime short cylindrical micelles coexist with microemulsion droplets.

11.
Eur Biophys J ; 43(4-5): 179-89, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24687686

RESUMO

Small-angle neutron scattering data were collected from aqueous dispersions of unilamellar vesicles (ULVs) consisting of mixtures of 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine and a homologous series of N,N-dimethyl-N-alkylamine-N-oxides (CnNO, n = 12, 14, 16, and 18, where n is the number of carbon atoms in the alkyl chain). A modeling approach was applied to the neutron scattering curves to obtain the bilayer structural parameters. Particularly, the external (2)H2O/H2O contrast variation technique was carried out on pure dioleoylphosphatidylcholine (DOPC) ULVs to determine the hydrophilic region thickness [Formula: see text] = 9.8 ± 0.6 Å. Consequently, the hydrocarbon region thickness [Formula: see text], the lateral bilayer area per one lipid molecule [Formula: see text], and the number of water molecules located in the hydrophilic region per one lipid molecule [Formula: see text] were obtained from single-contrast neutron scattering curves using the previously determined [Formula: see text]. The structural parameters were extracted as functions of [Formula: see text] (the CnNO:DOPC molar ratio) and n. The dependences [Formula: see text] provided the partial lateral areas of CnNOs ([Formula: see text]) and DOPC ([Formula: see text]) in bilayers. It was observed that the [Formula: see text]'s were constant in the investigated interval of [Formula: see text] and for n = 12, 14, and 16 equal to 36.6 ± 0.4 Å(2), while [Formula: see text] increased to 39.4 ± 0.4 Å(2). The bilayer hydrocarbon region thickness [Formula: see text] decreased with intercalation of each CnNO. This effect increased with [Formula: see text] and decreased with increasing CnNO alkyl chain length. The intercalation of C18NO changed the [Formula: see text] only slightly. To quantify the effect of CnNO intercalation into DOPC bilayers we fit the [Formula: see text] dependences with weighted linear approximations and acquired their slopes [Formula: see text].


Assuntos
Dimetilaminas/farmacologia , Bicamadas Lipídicas/química , Difração de Nêutrons , Fosfatidilcolinas , Espalhamento a Baixo Ângulo , Lipossomas Unilamelares/química , Relação Dose-Resposta a Droga
12.
Polymers (Basel) ; 16(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38794623

RESUMO

Dual networks formed by entangled polymer chains and wormlike surfactant micelles have attracted increasing interest in their application as thickeners in various fields since they combine the advantages of both polymer- and surfactant-based fluids. In particular, such polymer-surfactant mixtures are of great interest as novel hydraulic fracturing fluids with enhanced properties. In this study, we demonstrated the effect of the chemical composition of an uncharged polymer poly(vinyl alcohol) (PVA) and pH on the rheological properties and structure of its mixtures with a cationic surfactant erucyl bis(hydroxyethyl)methylammonium chloride already exploited in fracturing operations. Using a combination of several complementary techniques (rheometry, cryo-transmission electron microscopy, small-angle neutron scattering, and nuclear magnetic resonance spectroscopy), we showed that a small number of residual acetate groups (2-12.7 mol%) in PVA could significantly reduce the viscosity of the mixed system. This result was attributed to the incorporation of acetate groups in the corona of the micellar aggregates, decreasing the molecular packing parameter and thereby inducing the shortening of worm-like micelles. When these groups are removed by hydrolysis at a pH higher than 7, viscosity increases by five orders of magnitude due to the growth of worm-like micelles in length. The findings of this study create pathways for the development of dual semi-interpenetrating polymer-micellar networks, which are highly desired by the petroleum industry.

13.
J Colloid Interface Sci ; 672: 431-445, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38850868

RESUMO

HYPOTHESIS: The formation of micellar aggregates and the changes in their morphology are crucial for numerous practical applications of surfactants. However, a proper structural characterization of complicated micellar nanostructures remains a challenge. This paper demonstrates the advances of cryo-electron tomography (cryo-ET) in revealing the structural characteristics that accompany the evolution of surfactant aggregates. EXPERIMENTS: By using cryo-ET in combination with cryo-transmission electron microscopy (cryo-TEM), small-angle neutron scattering (SANS), and rheometry, studies were carried out on a model system composed of zwitterionic and nonionic surfactants. In this system, the molecular packing parameter was increased gradually by increasing the molar fraction of nonionic surfactant. FINDINGS: A series of structural transformations was observed: linear wormlike micelles (WLMs) â†’ branched WLMs â†’ saturated network of multiconnected WLMs â†’ perforated vesicles (stomatosomes). The transformations occur through an increase in the number of branches at the expense of cylindrical subchains and semispherical endcaps. Exponential distribution of subchains length was confirmed experimentally for multiconnected saturated networks. The stomatosomes were formed when the length of subchains becomes much shorter than the persistence length, causing the three-dimensional (3D) structure to transform into a two-dimensional (2D) membrane. This work identifies the mechanism of the structural changes, which can be further used to design various surfactant self-assemblies.

14.
Membranes (Basel) ; 13(11)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37999338

RESUMO

In this study, we aimed to design and research proton-conducting membranes based on Aquivion®-type material that had been modified with detonation nanodiamonds (particle size 4-5 nm, 0.25-5.0 wt. %). These nanodiamonds carried different functional groups (H, OH, COOH, F) that provided the hydrophilicity of the diamond surface with positive or negative potential, or that strengthened the hydrophobicity of the diamonds. These variations in diamond properties allowed us to find ways to improve the composite structure so as to achieve better ion conductivity. For this purpose, we prepared three series of membrane films by first casting solutions of perfluorinated Aquivion®-type copolymers with short side chains mixed with diamonds dispersed on solid substrates. Then, we removed the solvent and the membranes were structurally stabilized during thermal treatment and transformed into their final form with -SO3H ionic groups. We found that the diamonds with a hydrogen-saturated surface, with a positive charge in aqueous media, contributed to the increase in proton conductivity of membranes to a greater rate. Meanwhile, a more developed conducting diamond-copolymer interface was formed due to electrostatic attraction to the sulfonic acid groups of the copolymer than in the case of diamonds grafted with negatively charged carboxyls, similar to sulfonic groups of the copolymer. The modification of membranes with fluorinated diamonds led to a 5-fold decrease in the conductivity of the composite, even when only a fraction of diamonds of 1 wt. % were used, which was explained by the disruption in the connectivity of ion channels during the interaction of such diamonds mainly with fluorocarbon chains of the copolymer. We discussed the specifics of the mechanism of conductivity in composites with various diamonds in connection with structural data obtained in neutron scattering experiments on dry membranes, as well as ideas about the formation of cylindrical micelles with central ion channels and shells composed of hydrophobic copolymer chains. Finally, the characteristics of the network of ion channels in the composites were found depending on the type and amount of introduced diamonds, and correlations between the structure and conductivity of the membranes were established.

15.
Membranes (Basel) ; 13(8)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37623774

RESUMO

Aquivion®-type perfluorosulfonic acid membranes with a polytetrafluoroethylene backbone and short side chains with sulfonic acid groups at the ends have great prospects for operating in hydrogen fuel cells. To improve the conducting properties of membranes, various types of nanofillers can be used. We prepared compositional Aquivion®-type membranes with embedded detonation nanodiamond particles. Nanodiamonds were chemically modified with sulfonic acid groups to increase the entire amount of ionogenic groups involved in the proton conductivity mechanism in compositional membranes. We demonstrated the rise of proton conductivity at 0.5-2 wt.% of sulfonated nanodiamonds in membranes, which was accompanied by good mechanical properties. The basic structural elements, conducting channels in membranes, were not destroyed in the presence of nanodiamonds, as follows from small-angle neutron scattering data. The prepared compositional membranes can be used in hydrogen fuel cells to achieve improved performance.

16.
Int J Biol Macromol ; 224: 319-343, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36280176

RESUMO

Ferritin is a vital protein complex responsible for storing iron in almost all living organisms. It plays a crucial role in various metabolic pathways, inflammation processes, stress response, and pathogenesis of cancer and neurodegenerative diseases. In this review we discuss the role of ferritin in diseases, cellular iron regulation, its structural features, and its role in biotechnology. We also show that molecular mechanisms of ferritin self-assembly are key for a number of biotechnological and pharmaceutical applications. The assembly pathways strongly depend on the interface context of ferritin monomers and the stability of its different intermediate oligomers. To date, several schemes of self-assembly kinetics have been proposed. Here, we compare different self-assembly mechanisms and discuss the possibility of self-assembly control by switching between deadlock intermediate states.


Assuntos
Ferritinas , Ferro , Ferritinas/química , Ferro/química
17.
Commun Chem ; 6(1): 88, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37130895

RESUMO

Proteorhodopsins (PRs), bacterial light-driven outward proton pumps comprise the first discovered and largest family of rhodopsins, they play a significant role in life on the Earth. A big remaining mystery was that up-to-date there was no described bacterial rhodopsins pumping protons at acidic pH despite the fact that bacteria live in different pH environment. Here we describe conceptually new bacterial rhodopsins which are operating as outward proton pumps at acidic pH. A comprehensive function-structure study of a representative of a new clade of proton pumping rhodopsins which we name "mirror proteorhodopsins", from Sphingomonas paucimobilis (SpaR) shows cavity/gate architecture of the proton translocation pathway rather resembling channelrhodopsins than the known rhodopsin proton pumps. Another unique property of mirror proteorhodopsins is that proton pumping is inhibited by a millimolar concentration of zinc. We also show that mirror proteorhodopsins are extensively represented in opportunistic multidrug resistant human pathogens, plant growth-promoting and zinc solubilizing bacteria. They may be of optogenetic interest.

18.
Phys Rev E ; 106(2-1): 024108, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36110013

RESUMO

We consider scattering exponents arising in small-angle scattering from power-law polydisperse surface and mass fractals. It is shown that a set of fractals, whose sizes are distributed according to a power law, can change its fractal dimension when the power-law exponent is sufficiently big. As a result, the scattering exponent corresponding to this dimension appears due to the spatial correlations between positions of different fractals. For large values of the momentum transfer, the correlations do not play any role, and the resulting scattering intensity is given by a sum of intensities of all composing fractals. The restrictions imposed on the power-law exponents are found. The obtained results generalize Martin's formulas for the scattering exponents of the polydisperse fractals.

19.
Polymers (Basel) ; 14(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36501481

RESUMO

Salt-induced structural transformation of charged hybrid surfactant/polymer micelles formed by potassium oleate and poly(4-vinylpyridine) was investigated by cryo-TEM, SANS with contrast variation, DLS, and 2D NOESY. Cryo-TEM data show, that at small salt concentration beads-on-string aggregates on polymer chains are formed. KCl induces the transformation of those aggregates into rods, which is due to the screening of the electrostatic repulsion between similarly charged beads by added salt. In a certain range of salt concentration, the beads-on-string aggregates coexist with the rodlike ones. In the presence of polymer, the sphere-to-rod transition occurs at higher salt concentration than in pure surfactant system indicating that hydrophobic polymer favors the spherical packing of potassium oleate molecules. The size of micelles was estimated by DLS. The rods that are formed in the hybrid system are much shorter than those in polymer-free surfactant solution suggesting the stabilization of the semi-spherical endcaps of the rods by embedded polymer. 2D NOESY data evidence that in the spherical aggregates the polymer penetrates deep into the core, whereas in tighter packed rodlike aggregates it is located mainly at core/corona interface. According to SANS with contrast variation, inside the rodlike aggregates the polymer adopts more compact coil conformation than in the beads-on-string aggregates. Such adaptive self-assembled polymer-surfactant nanoparticles with water-insoluble polymer are very promising for various applications including drag reduction at transportation of fluids.

20.
Nanomaterials (Basel) ; 12(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36558298

RESUMO

Wormlike surfactant micelles are widely used in various applications including fracturing technology in oil industry, template synthesis of different nanoobjects, micellar copolymerization of hydrophilic and hydrophobic monomers, and so forth. Most of those applications suggest the solubilization of different additives in the micelles. The present paper is aimed at the comparative study of the effect of the solubilization of hydrophobic (n-decane and 1-phenylhexane) and hydrophilic (N-isopropylacrylamide and acrylamide) substances on the rheological properties and structure of the micelles using several complementary techniques including rheometry, small angle neutron scattering, dynamic light scattering, and diffusion ordered NMR spectroscopy. For these studies, mixed micelles of potassium oleate and n-octyltrimethylammonium bromide containing the excess of either anionic or cationic surfactants were used. It was shown that hydrophobic additives are completely solubilized inside the micelles being localized deep in the core (n-decane, 1-phenylhexane) or near the core/corona interface (1-phenylhexane). At the same time, only a small fraction of hydrophilic additives (14% of N-isopropylacrylamide and 4% of acrylamide) penetrate the micelles being localized at the corona area. Despite different localization of the additives inside the micelles, all of them induce the breaking of wormlike micelles with the formation of either ellipsoidal microemulsion droplets (in the case of hydrophobic additives) or ellipsoidal surfactant micelles (in the case of hydrophilic additives). The breaking of micelles results in the drop of viscosity of the solution up to water value. The main result of this paper consists in the observation of the fact that for all the additives under study, the dependences of the viscosity on the volume fraction of additive lie on the same master curve being shifted along the volume fraction axis by a certain factor depending on the hydrophobicity of the added species. Those data are quite useful for various applications of wormlike surfactant micelles suggesting the solubilization of different additives inside them.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA