Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Bioact Compat Polym ; 37(3): 220-230, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-37465414

RESUMO

Aim: Grape seed extract contains a complex mixture of proanthocyanidins (PACs), a plant biopolymer used as a biomaterial to improve reparative and preventive dental therapies. Co-polymerization of PACs with type I collagen mechanically reinforces the dentin extracellular matrix. This study assessed the biocompatibility of PACs from grape seed extract on dental pulp stem cells (DPSCs) in a model simulating leaching through dentin to the pulp cavity. The aim was to determine the type of PACs (galloylated vs. non-galloylated) within grape seed extract that are most compatible with dental pulp tissue. Methodology: Human demineralized dentin was treated with selectively-enriched dimeric PACs prepared from grape seed extract using liquid-liquid chromatography. DPSCs were cultured within a 2D matrix and exposed to PAC-treated dentin extracellular matrix. Cell proliferation was measured using the MTS assay and expression of odontoblastic genes was analyzed by qRT-PCR. Categorization of PACs leaching from dentin was performed using HPLC-MS. Results: Enriched dimeric fractions containing galloylated PACs increased the expression of certain odontoblastic genes in DPSCs, including Runt-related transcription factor 2 (RUNX2), vascular endothelial growth factor (VEGF), bone morphogenetic protein 2 (BMP2), basic fibroblast growth factor (FGF2), dentin sialophosphoprotein (DSPP) and collagen, type I, alpha 1 (COLI). Galloylated dimeric PACs also exhibited minor effects on DPSC proliferation, resulting in a decrease compared to control after five days of treatment. The non-galloylated dimer fraction had no effect on these genes or on DPSC proliferation. Conclusions: Galloylated PACs are biocompatible with DPSCs and may exert a beneficial effect on cells within dental pulp tissue. The observed increase in odontoblastic genes induced by galloylated PACs together with a decrease in DPSC proliferation is suggestive of a shift toward cell differentiation. This data supports the use of dimeric PACs as a safe biomaterial, with galloylated dimeric PACs exhibiting potential benefits to odontoblasts supporting dentin regeneration.

2.
J Chromatogr A ; 1553: 108-115, 2018 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-29699871

RESUMO

Countercurrent separation (CCS) has been widely used for the separation of high abundance compounds. However, the identification of low abundance compounds, such as mammalian steroid hormones, from natural sources is still a challenging task. A mixture of 14 human steroid hormone reference compounds was prepared for the development of a CCS enrichment strategy. The TLC-based GUESS (Generally Useful Estimate of Solvent Systems) method along with partitioning experiments were implemented to develop a process for the enrichment of these low abundance compounds with CCS. The application of CCS to the steroid hormone enrichment of Vitex negundo extracts was demonstrated by the identification of progesterone and estriol. This method provides a CCS-driven strategy to mine plant sources for low abundance compounds.


Assuntos
Distribuição Contracorrente , Estriol/análise , Progesterona/análise , Vitex/química , Estriol/isolamento & purificação , Humanos , Progesterona/isolamento & purificação
3.
Acta Biomater ; 55: 262-270, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28365481

RESUMO

Proanthocyanidins (PACs) are plant-derived, multifunctional compounds that possess high interactivity with extracellular matrix (ECM) components. The documented affinity of PACs for type-I collagen is directly correlated with their structural features and degree of polymerization. In this investigation, centrifugal partition chromatography (CPC) was used to sequentially deplete less active monomeric and polymeric PACs from a crude Pinus massoniana bark extract to create refined mixtures enriched in oligomeric PACs. The ability of these oligomeric PACs to modify the mechanical properties of the dentin collagen matrix and their biocompatibility with dental pulp cells (DPCs) was evaluated in an innovative biomimetic environment. The refined mixtures displayed high interactivity with dentin collagen as demonstrated by a significant increase (>5-fold) in the modulus of elasticity of the dentin matrix. In a simplified model of the dentin-DPC complex, DPCs embedded within their native ECM in the presence of PAC-treated dentin exhibited increased proliferation. Quantitative gene expression analyses indicated that exposure to PAC-treated dentin increased the expression of key biomineralization and odontogenic differentiation regulators, including RUNX2, BMP2, OCN, and DSPP. LC-MS/MS analysis revealed that PACs two to four units long (dimers, trimers, and tetramers) were being released from dentin into media, influencing cell behavior. Overall, the results suggested that PAC dimers, trimers, and tetramers are not only biocompatible, but enhance the differentiation of DPCs towards a phenotype that favors biomineralization. PAC-enriched refined mixtures can influence the field of biomaterials and regeneration by serving as renewable, non-cytotoxic agents that can increase the mechanical properties of biomaterials. STATEMENT OF SIGNIFICANCE: Pine bark extract is a renewable source of structurally diverse proanthocyanidins (PACs), multifunctional compounds whose interaction with collagen can be tailored to specific purposes by enrichment of selected PACs from the complex mixture. Oligomeric PACs were enriched from the extract and were shown here to sustain desired tissue modification and were thus assessed for cellular response in a model of the dentin-pulp interface. This model was developed to mimic leaching of potentially reactive compounds into pulp tissue. Dental pulp cells exposed to PAC-treated dentin showed increased proliferation and expression of genes necessary for extracellular matrix deposition and biomineralization, processes crucial for forming new dentin. Thus, collagen-interactive PACs may also enhance tissue regeneration and have broad impact in tissue engineering.


Assuntos
Calcificação Fisiológica/efeitos dos fármacos , Polpa Dentária/metabolismo , Dentina/química , Pinus/química , Proantocianidinas , Regeneração/efeitos dos fármacos , Células Cultivadas , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Polpa Dentária/citologia , Humanos , Proantocianidinas/química , Proantocianidinas/farmacocinética , Proantocianidinas/farmacologia
4.
Adv Nutr ; 7(1): 179-89, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27180381

RESUMO

In the field of food and nutrition, complex natural products (NPs) are typically obtained from cells/tissues of diverse organisms such as plants, mushrooms, and animals. Among them, edible fruits, grains, and vegetables represent most of the human diet. Because of an important dietary dependence, the comprehensive metabolomic analysis of dietary NPs, performed holistically via the assessment of as many metabolites as possible, constitutes a fundamental building block for understanding the human diet. Both mass spectrometry (MS) and nuclear magnetic resonance (NMR) are important complementary analytic techniques, covering a wide range of metabolites at different concentrations. Particularly, 1-dimensional 1H-NMR offers an unbiased overview of all metabolites present in a sample without prior knowledge of its composition, thereby leading to an untargeted analysis. In the past decade, NMR-based metabolomics in plant and food analyses has evolved considerably. The scope of the present review, covering literature of the past 5 y, is to address the relevance of 1H-NMR­based metabolomics in food plant studies, including a comparison with MS-based techniques. Major applications of NMR-based metabolomics for the quality control of dietary NPs and assessment of their nutritional values are presented.


Assuntos
Produtos Biológicos/química , Dieta , Metaboloma , Plantas Comestíveis/metabolismo , Animais , Humanos , Espectroscopia de Ressonância Magnética/métodos , Espectrometria de Massas/métodos , Metabolômica/métodos
5.
J Ethnopharmacol ; 173: 273-9, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26102551

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The leaves of Phaleria nisidai Kaneh. (Thymelaeaceae) are brewed into a tea commonly used as a tonic, strengthening beverage and immune enhancer in Palau, Micronesia. Recently, the leaves of P. nisidai have been shown to contain toxic daphnane diterpene esters which may pose a public health threat to Palauans. AIMS OF THE STUDY: This project documents the use frequency, preparation and side effects of P. nisidai. The content of daphnane diterpene esters in aqueous and methanol extracts and infusions prepared by healers in Palau is compared to assess the risk of daphnane ingestion associated with traditional consumption. Quantitative results are correlated with an in vitro assessment of the immunomodulating activity of the extracts. MATERIALS AND METHODS: Research participants, comprising traditional healers and laypeople, were interviewed concerning use patterns and side effects of P. nisidai. Several traditional healers prepared and provided boiled tea samples for chemical analysis. Leaves were collected and methanolic and aqueous extractions were prepared in the laboratory. Peripheral blood mononuclear cells (PBMCs) were cultured with various concentrations of methanol and aqueous leaf extracts and their output of IFNγ was measured using ELISA. Cell proliferation was also assessed using the MTT assay. The concentration of selected daphnane diterpene esters in healer-prepared infusions, lab methanol and lab aqueous extracts was quantified using ultraperformance liquid chromatography-mass spectrometry-triple quadrupole detection (UPLC-MS-TQD). RESULTS: Through structured interviews it was determined that P. nisidai tea was used frequently, with many participants drinking it daily. The reported side effects were mild, and with the exception of diarrhea (n=2), no side effect was mentioned more than once. Methanol extracts contained 4.0µg simplexin, 17.6µg acetoxyhuratoxin and 2.3µg huratoxin per g dry leaf material. In traditional water infusions provided by healers and in standardized lab-prepared aqueous extracts all three compounds were below the limit of detection (16.3ng/mL) using our UPLC-MS-TQD method. Methanol and aqueous extracts increased the release of IFNγ by PBMCs (p<0.05); however, methanol extracts were significantly more active than aqueous extracts (p<0.05). Methanol and aqueous extracts significantly increased proliferation of PBMCs, causing at least 60% more cell proliferation than negative control (p<0.05). CONCLUSIONS: The presence of daphnane diterpene esters in a frequently consumed traditional beverage was initially viewed as a public health concern, though interview data reveal that Palauans do not observe toxicity or side effects associated with their use of P. nisidai tea. Concurrently, daphnanes are present in methanolic extracts but not detected in aqueous preparations indicating that the traditional method of preparation avoids the extraction of these potentially toxic compounds, while still maintaining immunostimulant activity.


Assuntos
Fatores Imunológicos , Chá , Thymelaeaceae , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Diterpenos , Ésteres , Humanos , Fatores Imunológicos/efeitos adversos , Fatores Imunológicos/farmacologia , Interferon gama/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Metanol/química , Palau , Folhas de Planta/química , Chá/efeitos adversos , Terpenos/análise , Água/química
6.
J Chromatogr A ; 1364: 74-82, 2014 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-25218635

RESUMO

This study presents a strategy based on repeatable reversed-phase LC-TOF-MS methods and chemometric statistical tools, including untargeted PCA and supervised OPLS-DA models, to identify low-yielding compounds with potent immunostimulant activity in Phaleria nisidai (Thymelaeaceae), a plant with a history of use as an adaptogen on the islands of Palau in Micronesia. IFNγ ELISA assays were used to classify chromatographic fractions according to imunomodulatory activity prior to LC-TOF-MS chemometric analysis to target and identify compounds likely to contribute to observed activity. Simplexin, a daphnane diterpene ester, was identified for the first time from this genus and caused an increase in the production of cytokines (IFNγ, IL1ß, IL6, and IL13) by peripheral blood mononuclear cells. Five other daphnane diterpene esters were tentatively identified for the first time from this plant based on mass spectral data and are marker metabolites distinguishing active from inactive fractions. This analytical approach increased the efficiency of bioactivity-guided fractionation and has the potential to minimize redundant isolation and identify minor constituents with potent activity from a complex matrix.


Assuntos
Diterpenos/farmacologia , Fatores Imunológicos/farmacologia , Leucócitos Mononucleares/efeitos dos fármacos , Terpenos/farmacologia , Thymelaeaceae/química , Cromatografia de Fase Reversa/métodos , Citocinas/sangue , Ésteres , Humanos , Leucócitos Mononucleares/metabolismo , Espectrometria de Massas/métodos , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA