Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cancer Res Commun ; 4(6): 1581-1596, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38722600

RESUMO

Immune checkpoint therapy (ICB) has conferred significant and durable clinical benefit to some patients with cancer. However, most patients do not respond to ICB, and reliable biomarkers of ICB response are needed to improve patient stratification. Here, we performed a transcriptome-wide meta-analysis across 1,486 tumors from ICB-treated patients and tumors with expected ICB outcomes based on microsatellite status. Using a robust transcriptome deconvolution approach, we inferred cancer- and stroma-specific gene expression differences and identified cell-type specific features of ICB response across cancer types. Consistent with current knowledge, stromal expression of CXCL9, CXCL13, and IFNG were the top determinants of favorable ICB response. In addition, we identified a group of potential immune-suppressive genes, including FCER1A, associated with poor response to ICB. Strikingly, PD-L1 expression in stromal cells, but not cancer cells, is correlated with ICB response across cancer types. Furthermore, the unbiased transcriptome-wide analysis failed to identify cancer-cell intrinsic expression signatures of ICB response conserved across tumor types, suggesting that cancer cells lack tissue-agnostic transcriptomic features of ICB response. SIGNIFICANCE: Our results challenge the prevailing dogma that cancer cells present tissue-agnostic molecular markers that modulate immune activity and ICB response, which has implications on the development of improved ICB diagnostics and treatments.


Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias , Transcriptoma , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/tratamento farmacológico , Perfilação da Expressão Gênica , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo
2.
Commun Biol ; 6(1): 394, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37041233

RESUMO

Tumors are complex masses composed of malignant and non-malignant cells. Variation in tumor purity (proportion of cancer cells in a sample) can both confound integrative analysis and enable studies of tumor heterogeneity. Here we developed PUREE, which uses a weakly supervised learning approach to infer tumor purity from a tumor gene expression profile. PUREE was trained on gene expression data and genomic consensus purity estimates from 7864 solid tumor samples. PUREE predicted purity with high accuracy across distinct solid tumor types and generalized to tumor samples from unseen tumor types and cohorts. Gene features of PUREE were further validated using single-cell RNA-seq data from distinct tumor types. In a comprehensive benchmark, PUREE outperformed existing transcriptome-based purity estimation approaches. Overall, PUREE is a highly accurate and versatile method for estimating tumor purity and interrogating tumor heterogeneity from bulk tumor gene expression data, which can complement genomics-based approaches or be used in settings where genomic data is unavailable.


Assuntos
Perfilação da Expressão Gênica , Neoplasias , Humanos , Perfilação da Expressão Gênica/métodos , Neoplasias/genética , Transcriptoma , Genômica
3.
Cell Rep ; 39(6): 110800, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35545044

RESUMO

Tumors are heterogeneous cellular environments with entwined metabolic dependencies. Here, we use a tumor transcriptome deconvolution approach to profile the metabolic states of cancer and non-cancer (stromal) cells in bulk tumors of 20 solid tumor types. We identify metabolic genes and processes recurrently altered in cancer cells across tumor types, highlighting pan-cancer upregulation of deoxythymidine triphosphate (dTTP) production. In contrast, the tryptophan catabolism rate-limiting enzymes IDO1 and TDO2 are highly overexpressed in stroma, raising the hypothesis that kynurenine-mediated suppression of antitumor immunity may be predominantly constrained by the stroma. Oxidative phosphorylation is the most upregulated metabolic process in cancer cells compared to both stromal cells and a large atlas of cancer cell lines, suggesting that the Warburg effect may be less pronounced in cancer cells in vivo. Overall, our analysis highlights fundamental differences in metabolic states of cancer and stromal cells inside tumors and establishes a pan-cancer resource to interrogate tumor metabolism.


Assuntos
Neoplasias , Microambiente Tumoral , Linhagem Celular Tumoral , Humanos , Cinurenina/metabolismo , Neoplasias/genética , Células Estromais/metabolismo , Triptofano Oxigenase/genética , Triptofano Oxigenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA