Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 22(1): 351, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902789

RESUMO

Spinal cord injury (SCI) often results in motor and sensory deficits, or even paralysis. Due to the role of the cascade reaction, the effect of excessive reactive oxygen species (ROS) in the early and middle stages of SCI severely damage neurons, and most antioxidants cannot consistently eliminate ROS at non-toxic doses, which leads to a huge compromise in antioxidant treatment of SCI. Selenium nanoparticles (SeNPs) have excellent ROS scavenging bioactivity, but the toxicity control problem limits the therapeutic window. Here, we propose a synergistic therapeutic strategy of SeNPs encapsulated by ZIF-8 (SeNPs@ZIF-8) to obtain synergistic ROS scavenging activity. Three different spatial structures of SeNPs@ZIF-8 were synthesized and coated with ferrostatin-1, a ferroptosis inhibitor (FSZ NPs), to achieve enhanced anti-oxidant and anti-ferroptosis activity without toxicity. FSZ NPs promoted the maintenance of mitochondrial homeostasis, thereby regulating the expression of inflammatory factors and promoting the polarization of macrophages into M2 phenotype. In addition, the FSZ NPs presented strong abilities to promote neuronal maturation and axon growth through activating the WNT4-dependent pathways, while prevented glial scar formation. The current study demonstrates the powerful and versatile bioactive functions of FSZ NPs for SCI treatment and offers inspiration for other neural injury diseases.


Assuntos
Antioxidantes , Nanopartículas , Espécies Reativas de Oxigênio , Selênio , Traumatismos da Medula Espinal , Traumatismos da Medula Espinal/tratamento farmacológico , Animais , Antioxidantes/farmacologia , Antioxidantes/química , Nanopartículas/química , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Selênio/química , Selênio/farmacologia , Neurônios/efeitos dos fármacos , Ferroptose/efeitos dos fármacos , Ratos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Células RAW 264.7 , Regeneração Nervosa/efeitos dos fármacos
2.
Mol Pharm ; 20(6): 2966-2977, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37216314

RESUMO

Coenzyme Q10 is a potent antioxidant that plays an important role in the maintenance of various biochemical pathways of the body and has a wide range of therapeutic applications. However, it has low aqueous solubility and oral bioavailability. Mesoporous silica nanoparticles (MCM-41 and SBA-15 types) exhibiting varying pore sizes and modified with phosphonate and amino groups were used to study the influence of pore structure and surface chemistry on the solubility, in vitro release profile, and intracellular ROS inhibition activity of coenzyme Q10. The particles were thoroughly characterized to confirm the morphology, size, pore profile, functionalization, and drug loading. Surface modification with phosphonate functional groups was found to have the strongest impact on the solubility enhancement of coenzyme Q10 when compared to that of pristine and amino-modified particles. Phosphonate-modified MCM-41 nanoparticles (i.e., MCM-41-PO3) induced significantly higher coenzyme Q10 solubility than the other particles studied. Furthermore, MCM-41-PO3 led to a twofold decrease in ROS generation in human chondrocyte cells (C28/I2), compared to the free drug in a DMSO/DMEM mixture. The results confirmed the significant contribution of small pore size and negative surface charge of MSNs that enable coenzyme Q10 confinement to allow enhanced drug solubility and antioxidant activity.


Assuntos
Antioxidantes , Nanopartículas , Humanos , Solubilidade , Antioxidantes/farmacologia , Espécies Reativas de Oxigênio , Nanopartículas/química , Dióxido de Silício/química , Porosidade , Portadores de Fármacos/química
3.
J Nanobiotechnology ; 21(1): 316, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37667307

RESUMO

Spinal cord injury (SCI) is accompanied by loss of Zn2+, which is an important cause of glutamate excitotoxicity and death of local neurons as well as transplanted stem cells. Dental pulp stem cells (DPSCs) have the potential for neural differentiation and play an immunomodulatory role in the microenvironment, making them an ideal cell source for the repair of central nerve injury, including SCI. The zeolitic imidazolate framework 8 (ZIF-8) is usually used as a drug and gene delivery carrier, which can release Zn2+ sustainedly in acidic environment. However, the roles of ZIF-8 on neural differentiation of DPSCs and the effect of combined treatment on SCI have not been explored. ZIF-8-introduced DPSCs were loaded into gelatin methacryloyl (GelMA) hydrogel and in situ injected into the injured site of SCI rats. Under the effect of ZIF-8, axon number and axon length of DPSCs-differentiated neuro-like cells were significantly increased. In addition, ZIF-8 protected transplanted DPSCs from apoptosis in the damaged microenvironment. ZIF-8 promotes neural differentiation and angiogenesis of DPSCs by activating the Mitogen-activated protein kinase (MAPK) signaling pathway, which is a promising transport nanomaterial for nerve repair.


Assuntos
Estruturas Metalorgânicas , Traumatismos da Medula Espinal , Animais , Ratos , Estruturas Metalorgânicas/farmacologia , Polpa Dentária , Traumatismos da Medula Espinal/terapia , Apoptose , Diferenciação Celular
4.
J Nanobiotechnology ; 21(1): 488, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38105218

RESUMO

BACKGROUND: Lung cancer is a highly prevalent malignancy and has the highest mortality rate among all tumors due to lymph node metastasis. Bone marrow and umbilical cord-derived mesenchymal stem cells (MSCs) have demonstrated tumor-suppressive effects on lung cancer. This study investigated the effects of DPSC lysate on proliferation, apoptosis, migration and invasion of cancer cells were studied in vivo and in vitro. METHODS: The proliferation, apoptosis, and migration/metastasis were evaluated by cell counting kit-8 assay, Annexin-V and propidium iodide staining, and the transwell assay, respectively. The expression levels of apoptosis-, cell cycle-, migration-, and adhesion-related mRNA and proteins were measured by qRT-PCR and western blot. The level and mRNA expression of tumor markers carcino embryonic antigen (CEA), neuron-specific enolase (NSE), and squamous cell carcinoma (SCC) were measured by Enzyme-linked immunosorbent assay (ELISA) and qRT-PCR. Finally, a tumor-bearing mouse model was constructed to observe the tumor-suppressive effect of DPSC lysate after intraperitoneal injection. RESULTS: DPSC lysate decreased the viability of A549 cells and induced apoptosis in lung cancer cells. Western blot confirmed that levels of Caspase-3, Bax, and Bad were increased, and Bcl-2 protein levels were decreased in A549 cells treated with DPSC lysate. In addition, DPSC lysate inhibited the migration and invasion of A549 cells; downregulated key genes of the cell cycle, migration, and adhesion; and significantly suppressed tumor markers. Xenograft results showed that DPSC lysate inhibited tumor growth and reduced tumor weight. CONCLUSIONS: DPSC lysate inhibited proliferation, invasion, and metastasis; promoted apoptosis in lung cancer cells; and suppressed tumor growth- potentially providing a cell-based alternative therapy for lung cancer treatment.


Assuntos
Neoplasias Pulmonares , Células-Tronco Mesenquimais , Humanos , Camundongos , Animais , Neoplasias Pulmonares/patologia , Polpa Dentária/metabolismo , Polpa Dentária/patologia , Proliferação de Células , Células-Tronco Mesenquimais/metabolismo , RNA Mensageiro/farmacologia , Biomarcadores Tumorais , Apoptose , Movimento Celular , Linhagem Celular Tumoral
5.
Mol Pharm ; 18(2): 627-640, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32437160

RESUMO

Resveratrol (RES) is a nutraceutical with promising anti-inflammatory properties for the treatment of inflammatory bowel diseases (IBD). However, the clinical effectiveness of resveratrol as an oral anti-inflammatory agent is hindered by its extremely poor solubility and poor stability. In this study, we encapsulated resveratrol in ß-lactoglobulin (BLG) nanospheres and systematically analyzed their formulation parameters in vitro followed by a thorough in vivo anti-inflammatory testing in a highly specialized spontaneous murine UC model (Winnie mice model). Complexation of resveratrol with BLG increased the aqueous solubility of resveratrol by ≈1.7 times with 10% w/w loading. Additionally, the in vitro dissolution of resveratrol from the particles was found to be higher compared to resveratrol alone, resulting in >90% resveratrol dissolution in ∼8 h. The anti-inflammatory activity of resveratrol was examined for the first time in Winnie mice, a mouse model that closely represents the clinical signs of IBD. At a 50 mg/kg oral dose for 2 weeks, BLG-RES significantly improved both % body weight and disease activity index (DAI), compared to free resveratrol in Winnie mice. Importantly, histological evaluations revealed a similar trend with striking improvement in the pathology of the colon via an increase in goblet cell numbers and recovery of colonic epithelium. BLG-RES significantly increased the expression level of cytokine interleukin-10 (Il10), which confirms the reduction in inflammation potentially because of the increased dissolution and stability of resveratrol by complexation with BLG. This comprehensive study demonstrates the effectiveness of biocompatible nanomaterials such as BLG in oral delivery of poorly soluble anti-inflammatory molecules such as resveratrol in the treatment of IBD.


Assuntos
Anti-Inflamatórios/administração & dosagem , Colite Ulcerativa/tratamento farmacológico , Portadores de Fármacos/química , Resveratrol/administração & dosagem , Administração Oral , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacocinética , Colite Ulcerativa/imunologia , Colite Ulcerativa/patologia , Colo/efeitos dos fármacos , Colo/imunologia , Colo/patologia , Modelos Animais de Doenças , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Feminino , Humanos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/imunologia , Mucosa Intestinal/patologia , Lactoglobulinas/química , Masculino , Camundongos , Nanosferas/química , Resveratrol/química , Resveratrol/farmacocinética , Solubilidade
6.
Adv Funct Mater ; 30(4)2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-32377177

RESUMO

Optical lenses are among the oldest technological innovations (3000 years ago) and they have enabled a multitude of applications in healthcare and in our daily lives. The primary function of optical lenses has changed little over time; they serve mainly as a light-collection (e.g. reflected, transmitted, diffracted) element, and the wavelength and/or intensity of the collected light is usually manipulated by coupling with various external optical filter elements or coatings. This generally results in losses associated with multiple interfacial reflections, and increases the complexity of design and construction. In this work we introduce a change in this paradigm, by integrating both light-shaping and image magnification into a single lens element using a moldless procedure that takes advantage of the physical and optical properties of mesoporous silicon (PSi) photonic crystal nanostructures. Casting of a liquid poly(dimethyl) siloxane (PDMS) pre-polymer solution onto a PSi film generates a droplet with contact angle that is readily controlled by the silicon nanostructure, and adhesion of the cured polymer to the PSi photonic crystal allows preparation of lightweight (10 mg) freestanding lenses (4.7 mm focal length) with an embedded optical component (e.g. optical rugate filter, resonant cavity, distributed Bragg reflector). Our fabrication process shows excellent reliability (yield 95%) and low cost and we expect our lens to have implications in a wide range of applications. As a proof-of-concept, using a single monolithic lens/filter element we demonstrate: fluorescence imaging of isolated human cancer cells with rejection of the blue excitation light, through a lens that is self-adhered to a commercial smartphone; shaping the emission spectrum of a white light emitting diode (LED) to tune the color from red through blue; and selection of a narrow wavelength band (bandwidth 5 nm) from a fluorescent molecular probe.

7.
Anal Chem ; 91(8): 5011-5020, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30793604

RESUMO

Anthropogenic copper pollution of environmental waters from sources such as acid mine drainage, antifouling paints, and industrial waste discharge is a major threat to our environment and human health. This study presents an optical sensing system that combines self-assembled glutaraldehyde-cross-linked double-layered polyethylenimine (PEI-GA-PEI)-modified nanoporous anodic alumina (NAA) interferometers with reflectometric interference spectroscopy (RIfS) for label-free, selective monitoring of ionic copper in environmental waters. Calibration of the sensing system with analytical solutions of copper shows a linear working range between 1 and 100 mg L-1, and a low limit of detection of 0.007 ± 0.001 mg L-1 (i.e., ∼0.007 ppm). Changes in the effective optical thickness (ΔOTeff) of PEI-GA-PEI-functionalized NAA interferometers are monitored in real-time by RIfS, and correlated with the amount of ionic copper present in aqueous solutions. The system performance is validated through X-ray photoelectron spectroscopy (XPS) and the spatial distribution of copper within the nanoporous films is characterized by time-of-flight-secondary ion mass spectroscopy (TOF-SIMS). The specificity and chemical selectivity of the PEI-GA-PEI-NAA sensor to Cu2+ ions is verified by screening six different metal ion solutions containing potentially interfering ions such as Al3+, Cd2+, Fe3+, Pb2+, Ni2+, and Zn2+. Finally, the performance of the PEI-GA-PEI-NAA sensor for real-life applications is demonstrated using legacy acid mine drainage liquid and tap water for qualitative and quantitative detection of copper ions. This study provides new opportunities to develop portable, cost-competitive, and ultrasensitive sensing systems for real-life environmental applications.


Assuntos
Óxido de Alumínio/química , Cobre/análise , Interferometria/instrumentação , Nanoporos , Polietilenoimina/química , Calibragem , Cobre/química , Eletrodos
8.
Nanotechnology ; 30(9): 095301, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30523841

RESUMO

This article presents a new method for transferring and enhancing the adhesion of thin nanoporous alumina (NPA) membranes onto non-atomically flat substrates like fluorine-doped tin oxide (FTO) coated glass. The study reports use of glycerol as an additive to reduce the brittleness of the polystyrene filler that was used to fill the pores of the NPA membrane. Additionally, a new reflux-based method is reported here for the complete removal of the polystryrene filler from the porous channels of alumina. The adhesion between an NPA membrane and an underlying electrode was enhanced by electrodepositing a thin (∼40 nm) intermediate layer of the conducting polymer polyaniline (PANI). The PANI layer acts as an efficient electrostatic adhesive between the NPA and the conducting glass electrode and ensures ultra-strong adhesion of the NPA membrane, which can survive the harsh conditions of CdTe nanowire electrodeposition (60 °C temperature and an acidic electrolyte) without delamination for 30 min. The resulting nanowires clearly templated the structure of NPA and displayed free-standing nanowires over a large area with a diameter of around 60 nm, a length of approximately 2.8 µm (aspect ratio ∼47) and an areal density of 5.9 × 1012 nanowires cm-2. Total optical absorption measurement on the free-standing CdTe nanowires exhibited a 45% enhancement over a wavelength range of 350-1400 nm as compared to a CdTe planar thin film of same thickness.

11.
Biomacromolecules ; 17(8): 2726-36, 2016 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-27428076

RESUMO

Iron oxide nanowires produced by bacteria (Mariprofundus ferrooxydans) are demonstrated as new multifunctional drug carriers for triggered therapeutics release and cancer hyperthmia applications. Iron oxide nanowires are obtained from biofilm waste in the bore system used to pump saline groundwater into the River Murray, South Australia (Australia) and processed into individual nanowires with extensive magnetic properties. The drug carrier capabilities of these iron oxide nanowires (Bac-FeOxNWs) are assessed by loading anticancer drug (doxorubicin, Dox) followed by measuring its elution under sustained and triggered release conditions using alternating magnetic field (AMF). The cytotoxicity of Bac-FeOxNWs assessed in 2D (96 well plate) and 3D (Matrigel) cell cultures using MDA-MB231-TXSA human breast cancer cells and mouse RAW 264.7 macrophage cells shows that these Bac-FeOxNWs are biocompatible even at concentrations as high as 250 µg/mL after 24 h of incubation. Finally, we demonstrate the capabilities of Bac-FeOxNWs as potential hyperthermia agent in 3D culture setup. Application of AMF increased the local temperature by 14 °C resulting in approximately 34% decrease in cell viability. Our results demonstrate that these naturally produced nanowires in the form of biofilm can efficiently act as drug carriers with triggered payload release and magnetothermal heating features for potential anticancer therapeutics applications.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Neoplasias da Mama/terapia , Doxorrubicina/administração & dosagem , Compostos Férricos/química , Febre , Magnetismo , Nanofios , Animais , Antibióticos Antineoplásicos/farmacologia , Bactérias/crescimento & desenvolvimento , Biofilmes/crescimento & desenvolvimento , Neoplasias da Mama/patologia , Técnicas de Cultura de Células , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Terapia Combinada , Doxorrubicina/farmacologia , Portadores de Fármacos , Liberação Controlada de Fármacos , Feminino , Humanos , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Camundongos
12.
Anal Chem ; 87(17): 9016-24, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26259031

RESUMO

Herein, we present an interferometric sensor based on the combination of chemically functionalized nanoporous anodic alumina photonic films (NAA-PFs) and reflectometric interference spectroscopy (RIfS) aimed to detect trace levels of enzymes by selective digestion of gelatin. The fabrication and sensing performance of the proposed sensor were characterized in real-time by estimating the changes in effective optical thickness (i.e., sensing principle) of gelatin-modified NAA-PFs (i.e., sensing element) during enzymatic digestion. The working range (WR), sensitivity (S), low limit of detection (LLoD), and linearity (R(2)) of this enzymatic sensor were established by a series of experiments with different concentrations of gelatin (i.e., specific chemical sensing element) and trypsin (i.e., analyte), a model protease enzyme with relevant implications as a biomarker in the diagnosis of several diseases. The chemical selectivity of the sensor was demonstrated by comparison of gelatin digestion by other nonspecific enzyme models such as chymotrypsin and horseradish peroxidase. Furthermore, the role of the chemical sensing element (i.e., gelatin) was assessed by using hemoglobin instead of gelatin. Finally, we demonstrated that this sensor can be readily used to establish the kinetic parameters of enzymatic reactions. The obtained results revealed that the presented sensor has a promising potential to be used as a point-of-care system for fast detection of gastrointestinal diseases at early stages.


Assuntos
Óxido de Alumínio/química , Gelatina/química , Nanoestruturas/química , Fótons , Tripsina/análise , Eletrodos , Interferometria , Tamanho da Partícula , Porosidade , Propriedades de Superfície , Fatores de Tempo , Tripsina/metabolismo
13.
Anal Chem ; 86(3): 1837-44, 2014 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-24417182

RESUMO

In this study, we report about the structural engineering and optical optimization of nanoporous anodic alumina rugate filters (NAA-RFs) for real-time and label-free biosensing applications. Structurally engineered NAA-RFs are combined with reflection spectroscopy (RfS) in order to develop a biosensing system based on the position shift of the characteristic peak in the reflection spectrum of NAA-RFs (Δλpeak). This system is optimized and assessed by measuring shifts in the characteristic peak position produced by small changes in the effective medium (i.e., refractive index). To this end, NAA-RFs are filled with different solutions of d-glucose, and the Δλpeak is measured in real time by RfS. These results are validated by a theoretical model (i.e., the Looyenga-Landau-Lifshitz model), demonstrating that the control over the nanoporous structure makes it possible to optimize optical signals in RfS for sensing purposes. The linear range of these optical sensors ranges from 0.01 to 1.00 M, with a low detection limit of 0.01 M of d-glucose (i.e., 1.80 ppm), a sensitivity of 4.93 nm M(-1) (i.e., 164 nm per refractive index units), and a linearity of 0.998. This proof-of-concept study demonstrates that the proposed system combining NAA-RFs with RfS has outstanding capabilities to develop ultrasensitive, portable, and cost-competitive optical sensors.


Assuntos
Óxido de Alumínio/química , Técnicas Biossensoriais/instrumentação , Engenharia/instrumentação , Filtração/instrumentação , Nanotecnologia/instrumentação , Fenômenos Ópticos , Técnicas Biossensoriais/economia , Análise Custo-Benefício , Eletrodos , Porosidade , Fatores de Tempo
14.
Sensors (Basel) ; 14(7): 11878-918, 2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-25004150

RESUMO

Electrochemical anodization of pure aluminum enables the growth of highly ordered nanoporous anodic alumina (NAA) structures. This has made NAA one of the most popular nanomaterials with applications including molecular separation, catalysis, photonics, optoelectronics, sensing, drug delivery, and template synthesis. Over the past decades, the ability to engineer the structure and surface chemistry of NAA and its optical properties has led to the establishment of distinctive photonic structures that can be explored for developing low-cost, portable, rapid-response and highly sensitive sensing devices in combination with surface plasmon resonance (SPR) and reflective interference spectroscopy (RIfS) techniques. This review article highlights the recent advances on fabrication, surface modification and structural engineering of NAA and its application and performance as a platform for SPR- and RIfS-based sensing and biosensing devices.


Assuntos
Óxido de Alumínio/química , Técnicas Biossensoriais/instrumentação , Interferometria/instrumentação , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Nanoporos/ultraestrutura , Ressonância de Plasmônio de Superfície/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Propriedades de Superfície , Transdutores
15.
Artigo em Inglês | MEDLINE | ID: mdl-38819767

RESUMO

Peptides have gained tremendous popularity as biological therapeutic agents in recent years due to their favourable specificity, diversity of targets, well-established screening methods, ease of production, and lower cost. However, their poor physiological and storage stability, pharmacokinetics, and fast clearance have limited their clinical translation. Novel nanocarrier-based strategies have shown promise in overcoming these issues. In this direction, porous silicon (pSi) and mesoporous silica nanoparticles (MSNs) have been widely explored as potential carriers for the delivery of peptide therapeutics. These materials possess several advantages, including large surface areas, tunable pore sizes, and adjustable pore architectures, which make them attractive carriers for peptide delivery systems. In this review, we cover pSi and MSNs as drug carriers focusing on their use in peptide delivery. The review provides a brief overview of their fabrication, surface modification, and interesting properties that make them ideal peptide drug carriers. The review provides a systematic account of various studies that have utilised these unique porous carriers for peptide delivery describing significant in vitro and in vivo results. We have also provided a critical comparison of the two carriers in terms of their physicochemical properties and short-term and long-term biocompatibility. Lastly, we have concluded the review with our opinion of this field and identified key areas for future research for clinical translation of pSi and MSN-based peptide therapeutic formulations.

16.
J Biomol Struct Dyn ; : 1-12, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468538

RESUMO

Nucleolin, a multifaceted RNA binding domain protein is overexpressed in various cancers leading to dysfunction of several cellular signaling pathways. Quercetin, a distinctive bioactive molecule, along with its derivatives have shown exclusive physio-chemical properties which makes them appealing choices for drug development, yet their role in targeted cancer therapy is limited. Here, the RBD domain structure of Nucleolin was modeled and stabilized by MD simulations for a period of 1000 ns. Molecular docking was performed to determine the binding capability of ligands with the target. To determine the stability of the ligand inside the binding pocket of the protein, MD simulation was performed for a period of 250 ns each for Quercetin-4'-o'-Glucoside, Quercetin_9 and Quercetin complexes. Further, in-vitro studies including cytotoxicity and RT-PCR assays were performed to validate quercetin against Nucleolin. Molecular docking and MD Simulation studies suggested a potential mechanism of interaction of Quercetin-4'-o'-Glucoside, Querectin_9 and Quercetin with Nucleolin with the binding free energy of -63.653, -58.86 and -46.9 kcal/mol, respectively. Moreover, Lys 348 and Glu379 were identified as important amino acids in ligand interaction located at the RRM2 motif of Nucleolin. In-vitro studies showed significant downregulation in Nucleolin expression by 15.18 and 2.51-fold at 48h and 72h respectively in MCF-7 cells with Quercetin (IC50 = 160 µM). Our findings suggested the potential role of specific RRM motifs in interaction with natural compounds targeting Nucleolin. This could be an effective strategy in the identification of potential molecules in targeting Nucleolin which can be further explored for developing targeted therapies for breast cancer.Communicated by Ramaswamy H. Sarma.

17.
Adv Healthc Mater ; 13(9): e2302286, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38056013

RESUMO

Spinal cord injury (SCI) commonly induces nerve damage and nerve cell degeneration. In this work, a novel dental pulp stem cells (DPSCs) encapsulated thermoresponsive injectable hydrogel with sustained hydrogen sulfide (H2S) delivery is demonstrated for SCI repair. For controlled and sustained H2S gas therapy, a clinically tested H2S donor (JK) loaded octysilane functionalized mesoporous silica nanoparticles (OMSNs) are incorporated into the thermosensitive hydrogel made from Pluronic F127 (PF-127). The JK-loaded functionalized MSNs (OMSF@JK) promote preferential M2-like polarization of macrophages and neuronal differentiation of DPSCs in vitro. OMSF@JK incorporated PF-127 injectable hydrogel (PF-OMSF@JK) has a soft consistency similar to that of the human spinal cord and thus, shows a high cytocompatibility with DPSCs. The cross-sectional micromorphology of the hydrogel shows a continuous porous structure. Last, the PF-OMSF@JK composite hydrogel considerably improves the in vivo SCI regeneration in Sprague-Dawley rats through a reduction in inflammation and neuronal differentiation of the incorporated stem cells as confirmed using western blotting and immunohistochemistry. The highly encouraging in vivo results prove that this novel design on hydrogel is a promising therapy for SCI regeneration with the potential for clinical translation.


Assuntos
Hidrogéis , Traumatismos da Medula Espinal , Ratos , Animais , Humanos , Ratos Sprague-Dawley , Hidrogéis/química , Estudos Transversais , Polpa Dentária , Traumatismos da Medula Espinal/tratamento farmacológico , Células-Tronco , Medula Espinal
18.
J Mater Chem B ; 12(32): 7858-7869, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39021116

RESUMO

Nanozymes continue to attract considerable attention to minimise the dependence on expensive enzymes in bioassays, particularly in medical diagnostics. While there has been considerable effort directed towards developing different nanozymes, there has been limited progress in fabricating composite materials based on such nanozymes. One of the biggest gaps in the field is the control, tuneability, and on-demand catalytic response. Herein, a nanocomposite nanozymatic film that enables precise tuning of catalytic activity through stretching is demonstrated. In a systematic study, we developed poly(styrene-stat-n-butyl acrylate)/iron oxide-embedded porous silica nanoparticle (FeSiNP) nanocomposite films with controlled, highly tuneable, and on-demand activatable peroxidase-like activity. The polymer/FeSiNP nanocomposite was designed to undergo film formation at ambient temperature yielding a highly flexible and stretchable film, responsible for enabling precise control over the peroxidase-like activity. The fabricated nanocomposite films exhibited a prolonged FeSiNP dose-dependent catalytic response. Interestingly, the optimised composite films with 10 wt% FeSiNP exhibited a drastic change in the enzymatic activity upon stretching, which provides the nanocomposite films with an on-demand performance activation characteristic. This is the first report showing control over the nanozyme activity using a nanocomposite film, which is expected to pave the way for further research in the field leading to the development of system-embedded activatable sensors for diagnostic, food spoilage, and environmental applications.


Assuntos
Nanocompostos , Peroxidase , Nanocompostos/química , Peroxidase/química , Peroxidase/metabolismo , Polímeros/química , Dióxido de Silício/química , Materiais Biomiméticos/química , Propriedades de Superfície , Tamanho da Partícula , Catálise
19.
Anal Chem ; 85(16): 7904-11, 2013 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-23862775

RESUMO

Herein, we present a comparative study about the sensing performance of optical biosensors based on photoluminescence spectroscopy (PLS) and reflectometric interference spectroscopy (RIfS) combined with nanoporous anodic alumina (NAA) platforms when detecting different analytes under distinct adsorption conditions. First, NAA platforms are structurally engineered in order for optimizing the optical signals obtained by PLS and RIfS. Then, the most optimal NAA platforms combined with PLS and RIfS are quantitatively compared by detecting two different analytes: d-glucose and l-cysteine under nonspecific and specific adsorption conditions, respectively. The obtained results demonstrate that such parameters as the analyte nature and adsorption conditions play a direct role in the sensing performance of these platforms. However, as this study demonstrates, PLS-NAA platforms are more sensitive than RIfS-NAA ones. The former shows better linearity (i.e., proportional change in the sensing parameter with analyte concentration), higher sensitivity toward analytes (i.e., sharper change in the sensing parameter with analyte concentration), and lower limit of detection (i.e., minimum detectable concentration of analyte).


Assuntos
Óxido de Alumínio , Técnicas Biossensoriais , Eletrodos , Nanoestruturas , Luminescência , Peptídeos/análise
20.
Biofabrication ; 15(2)2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36595260

RESUMO

Spray nebulization is an elegant, but relatively unstudied, technique for scaffold production. Herein we fabricated mesh scaffolds of polycaprolactone (PCL) nanofibers via spray nebulization of 8% PCL in dichloromethane (DCM) using a 55.2 kPa compressed air stream and 17 ml h-1polymer solution flow rate. Using a refined protocol, we tested the hypothesis that spray nebulization would simultaneously generate nanofibers and eliminate solvent, yielding a benign environment at the point of fiber deposition that enabled the direct deposition of nanofibers onto cell monolayers. Nanofibers were collected onto a rotating plate 20 cm from the spray nozzle, but could be collected onto any static or moving surface. Scaffolds exhibited a mean nanofiber diameter of 910 ± 190 nm, ultimate tensile strength of 2.1 ± 0.3 MPa, elastic modulus of 3.3 ± 0.4 MPa, and failure strain of 62 ± 6%.In vitro, scaffolds supported growth of human keratinocyte cell epithelial-like layers, consistent with potential utility as a dermal scaffold. Fourier-transform infrared spectroscopy demonstrated that DCM had vaporized and was undetectable in scaffolds immediately following production. Exploiting the rapid elimination of DCM during fiber production, we demonstrated that nanofibers could be directly deposited on to cell monolayers, without compromising cell viability. This is the first description of spray nebulization generating nanofibers using PCL in DCM. Using this method, it is possible to rapidly produce nanofiber scaffolds, without need for high temperatures or voltages, yielding a method that could potentially be used to deposit nanofibers onto cell cultures or wound sites.


Assuntos
Nanofibras , Humanos , Nanofibras/química , Alicerces Teciduais/química , Poliésteres/química , Polímeros , Engenharia Tecidual/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA